(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是
A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$
B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$
D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$
B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$
D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
举一反三
- (2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
- 曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
- 计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
- 两根无限长的均匀带电直线平行,相距$2a$,线电荷密度分别为$+\lambda$和$-\lambda$,试求(1) 每单位长度的带电直线受的作用力 A: $E=0$ B: $E=\dfrac{\lambda^2}{4\pi \epsilon_0 a}$ C: $E=\dfrac{\lambda^2}{2\pi \epsilon_0 a}$ D: $E=\dfrac{\lambda}{4\pi \epsilon_0 a}$