2. 下面的函数相同的是
A: $y= \ln ((x+2)(x-2))$ 和 $y=\ln (x+2) + \ln(x-2)$
B: $y=\frac{x^2-4}{x-2}$ 和 $y=x+2$
C: $y=x^{\frac{1}{3}} \sqrt[3]{x-2}$ 和 $y=\sqrt[3]{x^2-2x}$
D: $y= 2^{(2^x)}$ 和 $y= (2^2)^x$
A: $y= \ln ((x+2)(x-2))$ 和 $y=\ln (x+2) + \ln(x-2)$
B: $y=\frac{x^2-4}{x-2}$ 和 $y=x+2$
C: $y=x^{\frac{1}{3}} \sqrt[3]{x-2}$ 和 $y=\sqrt[3]{x^2-2x}$
D: $y= 2^{(2^x)}$ 和 $y= (2^2)^x$
举一反三
- 函数$f(x,y)=\sin x\cdot \ln (1+y)$在点$(0,0)$处带有Peano型余项的3阶Taylor公式为$f(x,y)=$ A: $xy+\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ B: $xy-\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ C: $xy-x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ D: $xy+x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 函数$y={{\ln }^{3}}{{x}^{2}}$的微分为( )。 A: $\text{d}y=6x{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ B: $\text{d}y=\frac{6}{x}{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ C: $\text{d}y=3{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ D: $\text{d}y=2x{{\ln }^{3}}{{x}^{2}}\ \text{d}x$
- 函数y=12x+2的反函数是( ) A: y=-log2(x-2)(x>2) B: y=-log2(x-2)(x>3) C: y=log2(x-2)(x>3) D: y=-log2x-2(x>2)
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$