试证明下列命题:设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可微. 若 [tex=8.357x1.429]F27M+tMBWun73FG3D7wgFf6yxrSuQhl/hcXjXKuAY6T8Z5IR9t8e2kKqcx3rNmc0[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上是一个常数 (函数).
举一反三
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上的非负函数. 若 [tex=4.429x1.357]PMcHyNyC4QvVrD6r7UpeWPC5dgHNqfZbIcyMBLj97JM=[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex] 上没有原函数 (例如 [tex=8.5x1.571]/fZjg0TzX3OwsxRJu29sR7muo21pUOGZI+P0IkTCLOUChmf8b/t1WO+lVSDeuebU[/tex] 在[-1,1]上没有原函数).
- 试证明下列命题:设 [tex=4.643x1.357]rUdVMSjyF3EYU30fovGU8FRBzYkl4pmQAKOORt3l1w4=[/tex]. 若 [tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上绝对连续,则[tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上也绝对连续.
- 试证明下列命题:设 [tex=5.071x1.357]URJWe/UoIsmz9zq6yN5TWObtSlvSRLJaqG9mpMO/8tM=[/tex]. 若有 [tex=8.5x2.857]Df+Vz/bXDYwwRipLNbxPWvb9t5C3QoHXYwXzmKeFa8RAS4zj/26z0fvOfGv69YHB[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上递增.
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上可积,证明:函数[tex=7.357x2.643]uYQK6nKkJz0ye+R4MF1A/mAXhrEzMy80yl/ssuA5hkMrouc7XU3U9Ux1coDRcYuk[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上连续。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=4.786x1.357]s7iNtzv6VZBJIv3/n0IMc/7KLBs6U9bSIuIIC7VsZzI=[/tex]上连续,证明下列结论: 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是偶函数,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的原函数之一为奇函数.