已知一阶微分方程x(dy/dx)=yln(y/x),问该方程的通解是下列函数中的哪个?()
A: lny/x=x+2
B: lny/x=ce+1
C: =y/x+2
D: siny/x=y/x
A: lny/x=x+2
B: lny/x=ce+1
C: =y/x+2
D: siny/x=y/x
举一反三
- 已知一阶微分方程x(dy/dx)=yln(y/x),问该方程的通解是下列函数中的哪个?()
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)
- 方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=Cx-1 B: ln(y/x)=Cx<sup>2</sup>+1 C: ln(y/x)=Cx<sup>2</sup>+x D: ln(y/x)=Cx+1
- 方程xdy/dx=yln(y/x)的通解为()。 A: ln(y/x)=1 B: ln(y/x)=Cx+1 C: ln(y/x)=Cx<sup>2</sup>+1 D: ln(y/x)=Cx<sup>3</sup>+1
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$