关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入! 2022-06-28 在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。加进或剔除一个变量,通常是根据F检验看其对ESS的贡献而作出决定的。根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么? 在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。加进或剔除一个变量,通常是根据F检验看其对ESS的贡献而作出决定的。根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么? 答案: 查看 举一反三 只有一个解释变量的线性回归分析称一元线性回归分析,含有多个解释变量的线性回归分析称多元线性回归分析。() 若所有解释变量对被解释变量在理论上没有影响,实际回归时回归方...86608212686.png一定为0。 建立回归模型时,变量选择的方法主要有() A: 向前选择 B: 向后剔除 C: 中间插入 D: 逐步回归 E: 最优子集 一元线性回归模型只包含一个解释变量(自变量)和一个被解释变量(因变量),是最简单的线性回归模型 若要将一个被解释变量对两个解释变量作线性回归分析:写出回归模型的矩阵表示。