• 2022-06-27
    计算[tex=10.714x2.286]Q4r6qG+/CbgBgblRhPg0lm+G+seJoM0ry2O2GRzwd/YJPeAzffOFt1Y2u+5GSUEWV6l9Oi92JdLDZhEuV28FtQ==[/tex],其中[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]是(1)不包围也不通过原点的任意闭曲线;(2)以原点为中心的正向的单位圆;(3)包围原点的任意正向闭曲线。
  • 因为有任意闭路积分的问题,故先验证积分是否与路径无关,即验证[tex=1.5x2.214]V9fVXReHUrcmKJSTnoNlS57WSpaHGvSXFI+U9WJ8cmYi2lsP/u2Vp3up8rIK0/Pv[/tex]与[tex=1.5x2.071]V9fVXReHUrcmKJSTnoNlS51lpt21UdUZGENLx9+ScffrwD7RK0Gv41izkGK8DLMq[/tex]是否处处相等。[tex=2.571x2.214]V9fVXReHUrcmKJSTnoNlS1KS/fQXa8GdYgRXmH87+Az/Kb1rIie/u5/nNuu7VrjI[/tex][tex=11.071x2.643]JMZdUyCFun86L13G+9+Lt3iYCRqzhkNKEusb0OLjEkl5mLb722orBT4pVAPuKARc0gT47Bm7UTCduL8xo+fBpaQXIZh9lx8WxR/+Wfnfz1Y=[/tex][tex=6.071x2.571]C0oEe9Iq/dWgXfgRRJJnLZsvfqDmSKZWe+PmhzdhxwcQSiuEAn4kMIKez8T+LFprDJfr9ZlvOV4p/DQxCqEurw==[/tex],[tex=2.643x2.071]V9fVXReHUrcmKJSTnoNlS+m+sqsVguAfUlcXLQaFRyRzA0hwaCdgDmLqWz8zNe2U[/tex][tex=11.571x2.643]JMZdUyCFun86L13G+9+Lt3iYCRqzhkNKEusb0OLjEklLaXmBdPnTi9EKOjtTlZQ/z8BRHh6mspCICXC2/AO8sBR05c/gyNfB17QCZO6NDvzR0qMmQeFGFTt0dK9P+oDK[/tex][tex=7.071x2.5]o+le9nTrwLQxD6oOl0H1VomgY2CawdGRcVhway2KSaq6GqgxnuhQ0hL3trAtM0arVBmPIy9ssMH7SrB3FC3yHQ==[/tex],所以在全平面上除掉原点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex]的复连通域内,有[tex=4.357x2.214]V9fVXReHUrcmKJSTnoNlS1KS/fQXa8GdYgRXmH87+AzVjx8r+mraCk3Er/zPigNPImdyT0ngPeA6cQNmfijt+G79GlFAD9c8VNU6k70dtIA=[/tex],故(1)在不包围也不经过原点的任意闭曲线[tex=1.071x1.286]znnbcDroem+0Djr3hBPwXg==[/tex]上(如图所示)[img=295x355]1787bea62378613.png[/img][tex=13.0x2.357]T3Nt5gkMrd3cell2fNGv8knM5KlaEKD40F5ZOJDwaQ2sixw5mNe36q7M+TKKChPkbNRgrSsBIR98rS/CgERpO+P65w2K3yTV6FzqL2WKHKU=[/tex],因为由[tex=1.071x1.286]znnbcDroem+0Djr3hBPwXg==[/tex]所围域[tex=1.214x1.214]Ho8mAPpdke4daIdB3oO8tA==[/tex]是单连通域,且有[tex=4.143x2.643]aoAtmkWSHYklGULM9bBrEok+OCW9H9iIUjaJolgWGZfTO10gzFl54iBNVNJpKggK7pL0trOHcm5AuYzp6HMuew==[/tex]处处成立,由曲线积分与路径无关的等价条件知[tex=13.0x2.357]T3Nt5gkMrd3cell2fNGv8knM5KlaEKD40F5ZOJDwaQ2sixw5mNe36q7M+TKKChPkbNRgrSsBIR98rS/CgERpO+P65w2K3yTV6FzqL2WKHKU=[/tex](2)设[tex=1.071x1.286]ViYfYChGNyO6YfIJTH5iMg==[/tex]是以原点为中心的单位圆,方向取为正向,由于[tex=1.071x1.286]ViYfYChGNyO6YfIJTH5iMg==[/tex]所围的域包围有原点,是复连通域,此积分不一定为零,可利用参数方程直接计算[tex=1.071x1.286]ViYfYChGNyO6YfIJTH5iMg==[/tex]:[tex=5.143x2.786]fnpmC2J6JmQBLyo5NmGAz3ydYJr5HNPwSdEPxdwncUc9s1UdWT0V4tmejPdK5MONl2OUltanfhZKSp85Q6NNnA==[/tex],[tex=4.571x1.286]OiGH0k5KxfGmLHkL/3aHG6GgZuezAp0mtFmTOsS6JMVre4nxhci657IGf9KJLCDS[/tex],[tex=12.286x2.357]/bmxXiv0OQCAiBO07amnRz59+PbxMNMZAIxpRUoVQ5V/DQVCsmOCafwUjff9eXfuxi0l8jBi+0fWPHgAOqJ1BmF5YapbimvoMvLu7F4L7/E=[/tex][tex=19.214x2.429]43DHJW5hNMMx+YjFVGcc+jySmtwfNTuvpkRyJe28PjcSk+dUzizGTrPJYAj0hiqxHEPyo/010D78krL4oFtcW7jWdgC8IJVerbFz+2moDFls0ol90PvgB4G8FVxmsqIAY+g3v45TQhhUkAGcTPaM3A==[/tex][tex=9.071x2.429]4Cd+cFRG7vN36wpB3nnACMQqNiCsMaswscOCREUMY3hUHDLeXwkCSnI7Tz+i2YAC[/tex][tex=12.143x1.286]ga/qhmJysEU1NpSvHlXlZ72spxWF2G1bhw/amsFvRh1ygWZ40bMaxwmZGTVL9O0tC/GJpp9Y3kMiS2YlH2DclQ==[/tex][tex=8.929x2.429]19hOqotq8LBSNBwiShBCBbsak3mGKObnJk4xSVMLeTrIS8xq7Dw3VfaNJYebBoH4[/tex](3)如上图所示,由于[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]包围原点,故是复连通域,又[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]是任意闭曲线(包围原点)直接积分不现实。为了除去原点,在[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]和单位圆[tex=1.071x1.214]k9Aohr7/cYPv99wZ5Rg2rA==[/tex](当[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]不能完全包含[tex=1.071x1.214]k9Aohr7/cYPv99wZ5Rg2rA==[/tex]时,在[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]内任作一个中心在原点,半径为充分小正数[tex=0.5x1.0]g3C024VcW5lWpceJ6ZrB4A==[/tex]的小圆即可解决)之间作辅助线[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex](如图所示),使连接[tex=1.071x1.214]rpdZzEcni+HXXpShcnbq7Q==[/tex]和[tex=1.071x1.286]6yqW8fcpVF9OkaZv4Gb/5A==[/tex],则[tex=9.143x1.429]FVOrZJ1hU2QhmVaSUL69R9fkLTqodHSq3hiWf7HceQnYYEGKBCziIaPulBPrXw0UWsEY9e6Az+nInmtbDBnD7w==[/tex]成为一条闭曲线(其中[tex=1.857x1.214]YeiKhvSMq5U4dAPAXFLO/Q==[/tex]表示[tex=1.071x1.214]k9Aohr7/cYPv99wZ5Rg2rA==[/tex]的负向闭曲线),这条闭曲线不包围原点,所以在以 [tex=0.929x1.143]rhHRFIHsX3I90ujZbbcvjQ==[/tex]为边界曲线的单连通域上,恒有[tex=4.357x2.214]V9fVXReHUrcmKJSTnoNlS1KS/fQXa8GdYgRXmH87+AzVjx8r+mraCk3Er/zPigNPImdyT0ngPeA6cQNmfijt+G79GlFAD9c8VNU6k70dtIA=[/tex],故[tex=12.929x2.286]GXpil/8Thm/KbL5EeAF5uwGN6Poxeayp80BVrHlHk9RSTbubpNLsiTCXM0zz1+wHA7kt6cyaPG4/Mc+agu9GOJ2XAEfckLK1uA6DZToixSM=[/tex],即[tex=12.143x2.286]GXpil/8Thm/KbL5EeAF5uwGN6Poxeayp80BVrHlHk9RSTbubpNLsiTCXM0zz1+wHA7kt6cyaPG4/Mc+agu9GONAZGico3T3nBpOOL1LoGXw=[/tex][tex=12.0x2.429]tXCYbBkMN60J31NUrgpQXMGJ04N/C2otzhnXETHPf8Kp9YZNYkrxPhvTbENECMRigNEPDDZ5TThlygtsV8UNxL4LI2TirJfsK4baQ3vuF3I=[/tex][tex=12.286x2.286]5tM6qzGZGZa00VZRE3srZrWgW7LtqPPKPkw6gVk/54db52ygc77CmATcSHW/bnKgQuWkM/5J5RMORmocENDtssQwMsHOVvclnXc2httx6Y4=[/tex][tex=12.571x2.357]zXv9LcPEL0LodaURVb3U0aes17z/LkmlikJKDzEsm0e/AlaNQuT5swsbjHSGoTXX3F5BgBzP9Sc/pfiKe/jf4uAKe73C3i6f7m58f+t5WFs=[/tex][tex=13.286x2.286]5tM6qzGZGZa00VZRE3srZnff2MNWYyEcKJUv8fViG1+u1+a6piFbBRKkpEhcOo1D2Cs+lgvelZU6qPRIFnCtXaVOm6rxpAZ7CT8IKfkBhqc=[/tex]因为[tex=12.571x2.286]5tM6qzGZGZa00VZRE3srZrWgW7LtqPPKPkw6gVk/54db52ygc77CmATcSHW/bnKgQuWkM/5J5RMORmocENDtsoX2kkxU7vAYMqpAIErT+lM=[/tex][tex=12.429x2.286]kDG7s2Xk3xa0crwU0hCMIUVnfqvZXThxFVKyAQwEvofa15X+7/u766/iE+3BlXAQAq2fGjjOWjuMaBPsB6WFSjODBSpH8ojDl7qbv4JQcRE=[/tex],所以[tex=12.0x2.429]tXCYbBkMN60J31NUrgpQXMGJ04N/C2otzhnXETHPf8Kp9YZNYkrxPhvTbENECMRi3TtdrMC87p24q6WTVJH60VCFZJq/M38Jt189ulR+FSU=[/tex][tex=13.643x2.357]zXv9LcPEL0LodaURVb3U0aes17z/LkmlikJKDzEsm0e/AlaNQuT5swsbjHSGoTXX3F5BgBzP9Sc/pfiKe/jf4oFU4BRjlSx0UpmoiBjNMxQ=[/tex],[tex=12.286x2.429]tXCYbBkMN60J31NUrgpQXMGJ04N/C2otzhnXETHPf8Kp9YZNYkrxPhvTbENECMRiYtzY2eafAT2dAMusNfpgoGIRfGWcdfiuqUHi3/mDs5M=[/tex][tex=12.714x2.357]Lw4VLcOpMm4iLOaCLSxdcPxi3+9REoecHKx9MGtNKE4lJNAfx98xxQFg+RwlDgRKVgrgWKz8B66JdilGk5a1kWqVIlpLZhhu3C2GYEeRZ0c=[/tex][tex=12.214x2.357]RBtSQ0xcYmeKy+HnvXAGkyBh3dinuu/zwjpgvSQdLJd/qWpyFg/pd/YOqMz7PlLvFJOr62FmYJndai6wEOwseLJQV8VRSiyD+gOQwaFi9eo=[/tex],由此推出了包围原点的任意正向闭路[tex=1.071x1.286]CByAIXOj9Gclpix4UeG1Dw==[/tex]上的积分等于包围原点的正向单位圆的积分,故[tex=11.214x2.429]tXCYbBkMN60J31NUrgpQXMGJ04N/C2otzhnXETHPf8Kp9YZNYkrxPhvTbENECMRiWnwjGFuaJjA6A88HzUXxOZy7l7CirfO3fP2Wm2/VJe8=[/tex][tex=2.857x1.286]OWO+nkAJzpTPxLtwrlUMIg==[/tex]。

    举一反三

    内容

    • 0

      利用格林公式,计算曲线积分:[tex=8.929x2.214]swXz4U5aYUXlOjdf50B2VWS2nHIipXKETgw49b3U+MZj0DYoPjLKhedD7uwlboxO[/tex],其中[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]为矩形区域[tex=5.786x1.286]8Ki55eIbJz6oJspB8TFYsT0Y8HWobvNwu4vphsjbjvE=[/tex]的正向边界 .

    • 1

      利用格林公式,计算下列曲线积分.[tex=9.0x2.214]swXz4U5aYUXlOjdf50B2VeY9vmqvdMF0zd3DNyolkeAULp3lsgUGxU3jSG6+yo8B[/tex],其中[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]为矩形区域[tex=5.786x1.286]8Ki55eIbJz6oJspB8TFYsT0Y8HWobvNwu4vphsjbjvE=[/tex]的正向边界.

    • 2

      证明: 若 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 为平面上封闭曲线, [tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex] 为任意方向向量, 则[tex=7.214x2.643]sylT6Y9dWdZ/DxvghRXRapmtORH1nRe9vGqo+X7mpwGU8At1xWYPt7vb0aYeV+Xo[/tex]其中 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 为曲线 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 的外法线方向.

    • 3

      沿指定曲线的正向计算下列积分:[tex=5.5x2.643]R3anEHximg3+9FRQNISr4mIlx3hH+tbF/MPooUWuy0A=[/tex], [tex=0.714x1.0]9fIXCQOmrgOp2L5B47vYUQ==[/tex] 为包围 [tex=1.786x1.0]iYbK/m2HPL4SyxgIH2UTBA==[/tex] 的闭曲线.

    • 4

      沿指定曲线的正向计算下列各积分:[tex=5.5x2.643]akYBt0xscOyVOI2j2tXZdZ7NEGY0WXWzH2j4UVoRs4o=[/tex],  [tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]  为包围  [tex=1.786x1.0]OK0mYXKV9THVWMjDsQSyrQ==[/tex]  的闭曲线.