罗尔定理要满足的条件有().
A: 在[a,b]上连续
B: 在(a,b)内可导
C: 在[a,b]内可导
D: f(a)=f(b)
A: 在[a,b]上连续
B: 在(a,b)内可导
C: 在[a,b]内可导
D: f(a)=f(b)
举一反三
- 罗尔定理要满足的条件有().A、在[a,b]上连续 B、在(a,b)内可导 C、在[a,b]内可导 D、f(a)=f(b)
- 若函数y=f(x)满足条件(),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A)/(b-A)成立。 A: 在(a,B)内连续; B: 在(a,B)内可导; C: 在(a,B)内连续,在(a,B)内可导; D: 在[a,B]内连续,在(a,B)内可导。
- 罗尔定理成立需要满足的条件包括 A: 函数f(x)在闭区间[a,b]上连续 B: 函数f(x)在开区间(a,b)上可导 C: f(a)=f(b) D: 函数f(x)在区间端点的函数值不相等
- 函数f(x)=|x|在区间[-1,1]上不满足罗尔定理条件是因为() A: 在x=0无定义 B: 在[-1,1]上不连续 C: 在(-1,1)内不可导 D: f(1)=f(-1)
- 如果函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ∈(a,b),使得f(b)-f(a)=______.