单边拉普拉斯变换F(S)=1+S的原函数f(t)=( )
A: e-t·ε(t)
B: (1+e-t)ε(t)
C: (t+1)ε(t)
D: δ(t)+δ′(t)
A: e-t·ε(t)
B: (1+e-t)ε(t)
C: (t+1)ε(t)
D: δ(t)+δ′(t)
举一反三
- 设$L[f(t)]=F(s)$,则下列公式中,不正确的是 A: $f(t)=\frac{(-1)^n}{t^n}L^{-1}[F^{(n)}(s)]$ B: $f'(t)=L^{-1}[sF(s)]-f(0)\delta (t)$ C: $\int_0^t f(t)dt=L^{-1}[\frac{F(s)}{s}]$ D: $e^{at}f(t)=L^{-1}[F(s+a)]$
- F(s)=1/s的拉氏反变换为(). A: f(t)=t B: f(t)=1 C: f(t)=t2 D: f(t)=t3
- 某LTI系统的冲激响应h(t)=e-tε(t+1),激励f(t)= ε(t-1),则系统的零状态响应yZS为 。 A: (1-e-t) ε(t) B: e(1-e-t) ε(t) C: e(1+e-t) ε(t) D: e(1-e-t-1) ε(t)
- 【多选题】若f 1 (t) = ɛ (-t) , f 2 (t) = e t ,则f 1 (t)* f 2 (t) = A. f 1 ꞌ (t)* f 2 (–1) (t) B. f 1 (–1) (t)* f 2 ꞌ (t) C. f 1 (t-3)* f 2 (t+3) D. f 1 (–3) (t)* f 2 ꞌꞌꞌ (t)
- 若已知f1(t)的拉氏变换F1(s)=1/s ,则f(t)=f1(t)f1(t)的拉氏变换F(s)=