• 2022-06-29
    计算曲面积分[tex=7.0x2.643]JbWmc3nJuvJuq6ol/jen3WloGOWqsgI2ZtTP9kMNmJk=[/tex]其中[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]为抛物面[tex=7.571x1.571]YjtvHjMbz4J9/845JbLU3SASA/SC87etXOadnYronCM=[/tex]在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面上方的部分,[tex=3.714x1.357]lz5DmJo9UhIHd4EC4Cb0Wg==[/tex]如下:[tex=5.0x1.357]nUCDXHurT5eRGNUcmb8u9Q==[/tex]
  • 抛物面[tex=7.571x1.571]YjtvHjMbz4J9/845JbLU3SASA/SC87etXOadnYronCM=[/tex]与[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面的交线是[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面上的圆[tex=4.429x1.429]nuHh9ajvoHXpAwCrABsxfg==[/tex],因而曲面[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面上的投影区域[tex=7.357x1.5]kOMa47+uoj293XfkzLSpYLAZe8ElkBcgJhuddYyhFt7z45TYhsZnnT6AdgSphZKZ[/tex],且[tex=19.429x2.143]94QC72rRH1RUMnJBJIu1gbcX00tCOfyVVm2U1KjKiS3bMMxh3A+X/nikxe2yupHVSv0zAB30F46A7wzEhf779pGwDiI7i08oHnrp1G4zjjA=[/tex][tex=32.0x3.214]JbWmc3nJuvJuq6ol/jen3XTBaIefo2BHOd72AFr2EXwalBOvhZkfBIqCZgHqEmYrcERmLLEhYUxoxMTDW/w7TiVW7XClT2MwnuHFuw9rk9VKbgNIVUM7OBJDHJf7ZDb1pxmyFUE3CxDbdib/kMcxfexdlOBuW+FTPGT1UM5KNsrPVX+xVcX7fQ8b4Gf2prQ2aKJHkvnRkNe7iiE0yyjSlw==[/tex][tex=13.071x3.143]LMrjJzWTsmkFvRkUGa2rS7e/7KqSD8sb1Xp6vc0ujeHqjC4GxW/jALDKdvPai9NQRrkryJBtmKtd1lUOq2PddFZcc+3PTbXWRjCqXKinzrQUgxg67/LReMV/T5iQLBMeaSwajlDd5ov4B+94t19PXw==[/tex]

    举一反三

    内容

    • 0

      9判别下列函数是否是周期函数,若是周期函数,求其周期 :(1) [tex=8.357x1.357]jijpvC8Aw74QOOOJh5Va05j3PtA64Pms1Q5qDGlqeN4=[/tex](2) [tex=5.643x1.357]TG5DUF3HrCbhIJWDEcp5Pj9u3e2PUgpbN4NJQ6DZXLw=[/tex](3) [tex=5.714x1.357]SBxtvKszj8+jJcycMEKn5vqfhi5GLWqH4Gac9QRbIHc=[/tex](4) [tex=6.929x1.357]NZ5EVFRfE4pFsgkbEOhFkNg5/qZx8geAT5eL+yzbq1Q=[/tex]

    • 1

      设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3

    • 2

      设曲面[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]由曲线[tex=6.214x2.786]fnpmC2J6JmQBLyo5NmGAz727bc5j+fEnhWvy0LhB5lNOIkAjGWzebh747Njng54jnw27SX3OfZmd09H8CpF5F0P8j5ihHN3RPAzzG1pmGcs=[/tex],绕[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴旋转而成,则[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]在点[tex=3.214x1.357]gIjsgDCCLAap61Pmt4uK8Q==[/tex]处的单位法向量为[input=type:blank,size:4][/input]

    • 3

      计算对坐标的曲面积分:[tex=10.214x3.357]U2AmJ5y60k/lS9POfmWH3bdxTqrHnqnZZCLWRGFDJ7/G5759/rxiaH7HuygXyGA6[/tex][tex=16.5x1.357]zpQksOiLdjn0n19uGk6JpwB8ZOi//y8PLkD/jI1NwO5h6IQvPD0igAJdumFw2Isx[/tex]其中[tex=3.714x1.357]bgW0mXaRlSN8TPLXtqD9/w==[/tex]为连续函数,[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]为是平面[tex=4.429x1.214]uIQzNAMUYdCsWKUtJfcDFw==[/tex]在第四象限部分的上侧。

    • 4

      如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。