举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,对任意[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维列向量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]均有[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex],证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是零矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.
- [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与某个对角矩阵相似的充分必要条件是[input=type:blank,size:6][/input] . 未知类型:{'options': ['矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩等于[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个不同的特征值', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是对称矩阵', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个线性无关的特征向量'], 'type': 102}
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为对称矩阵,证明[tex=3.0x1.286]+Kuu2eFUus2l0EouIu5RjNd8NcgWY09erbUFzkPnuyk=[/tex]也是对称矩阵。
- 假设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶反对称矩阵,试证:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的阶数[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为奇数时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是不可逆矩阵.
内容
- 0
若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵,证明[tex=2.929x1.286]PgI7SwgsQ9tTXWFTdkSmxw==[/tex]为对称矩阵。
- 1
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵,已知[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维列向量[tex=0.643x1.286]vYiGJJ9TAtvnQmM1PsOB8g==[/tex]是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的属于特征值[tex=0.571x1.286]B2ovqsb3k1n+9dueLzQ98w==[/tex]的特征向量,证明[tex=2.0x1.286]i0yIERCSBGtjCR9xuVKhzO+th90ztweXwQFKMlL2l3c=[/tex]是矩阵[tex=4.643x1.286]dWXy6ruRM7w0aj3g8UzA9zpVWc0P8UIDDZVojDBNofM=[/tex]的属于特征值[tex=0.571x1.286]B2ovqsb3k1n+9dueLzQ98w==[/tex]的特征向量.
- 2
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,证明:[tex=8.5x1.286]OVfSjPYbleI4CXM/SroEQsA5SVXHwxRs1uhjCnT84Lj3TC7IkGcJnfuDR8k5ro+h[/tex],其中[tex=1.143x1.286]TvSdGE1Yfrol50wGLH8g9Q==[/tex]为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵.
- 3
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实对称矩阵,证明:存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=5.357x1.286]K6zxAGBIogIIiD5GFofAx/pmcJwoRykyV8iSjArS8Ys=[/tex],[tex=4.929x1.286]UzUiBuTu85eC8sat7ufimOL6HcqebYAko5n7tYXBrwA=[/tex],其中[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]为对角矩阵.
- 4
假设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维随机列向量,而[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,证明:[tex=9.0x1.286]2oA4sX7FP/ySiHRnf5j+fiNGrpEdrI9ZgQDbtQSlAQOLguZgmhCwoMIEBih5Z4N1[/tex].