• 2022-06-29
    设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为反对称矩阵的充分必要条件是对任一 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维向量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],有[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex].
  • 分析:利用反对称矩阵的定义证明.证:“[tex=1.0x1.286]x75e8bba1accy98eLb3ngwBEvW+5Ew5ORdsNAfg4fFI=[/tex]”必要性.设[tex=3.929x1.286]DMjE1FfT7TqZpgdquc4BY3Fo97UUYb4od0PsvxA3xrA=[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶反对称矩阵,即[tex=4.143x1.286]IzojUDVR07CSSIfTd2i9+6MCHZlaI/PSPPcQ8yTr9/A=[/tex],因此对任意[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维向量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],有[tex=4.571x1.429]twA8u84tmW2RYKo1Z5F0yE9Z6gq7O+w4iWF/EjOlWbEKCrPiZoj0KGwlxqLrzxUA[/tex][tex=4.786x1.286]Kdd5iIHsIvTRLfxUD4M/O+YL4uBBdDrQPmg2GtOWfTk=[/tex][tex=4.857x1.286]IW/3piTT+wbzPVtfqwYoepeijRBYKZBUG5loNKXYgBQ=[/tex].注意到[tex=3.143x1.286]wF5nUZr0ealOadELvzQbbhuGihhvB7/FI3VkbZtzSLI=[/tex]是一个数,所以必然有[tex=9.0x1.429]twA8u84tmW2RYKo1Z5F0yE9Z6gq7O+w4iWF/EjOlWbFsocbNqW//rALyJXHLgDVLtkE6p1f6rRJipvtOEu+f+Q==[/tex],于是,[tex=8.286x1.286]C/XXYpOuqMMD92TILeWjMC9z0OvY2ESTmJpWnUu0iM/w2g88CsgaUNVcXbbWhs5a[/tex],即[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex].“[tex=1.0x1.286]uAYdJKdJPVPa6DR4QdMoyw==[/tex]”充分性.设对任一[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维向量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]有[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex],分别取[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]等于[tex=7.571x1.286]jZNLUEHFJcpTyazkoxZS39GhzGqeRNKOjUx/kuuLxJvtU9mZAjCrWSSia7WoXc+R[/tex],[tex=7.571x1.286]2lX/s5ockuw1rQDl+Mk33tEOqQRqX//tWYZp5VZULZmal1L0pOyo0QgxB6xMQ+WY[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=7.714x1.286]Ya7r1TCUjGWOMsXTGFsMysLKubpEGrAW0NcBnZB4h4iT+GXaDNgyOh3dUALghtvR[/tex],代入[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex],可以得到[tex=3.143x1.286]J5WX+G6v6ea4PzncEG6yDA==[/tex],[tex=3.143x1.286]2+FTmXvZl5ZJYEjXPo/NNA==[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=3.357x1.286]BZqcgdV+pnV4HHIgDe1QTA==[/tex].再分别取[tex=8.286x1.357]lvuOE/8wijx88lT3/xfyY5QlGUx6O8qrcIjcOOMj4rV1gdHvP5lrBtAa6PBQduKzTDK/kD2U40EwqVJCYzSPqL7RcBSEBqmmjVOd0i/33uI=[/tex],代人[tex=4.929x1.286]C/XXYpOuqMMD92TILeWjML21tCr7xajq+PECb/HEKQA=[/tex],得[tex=3.143x1.286]wF5nUZr0ealOadELvzQbbhuGihhvB7/FI3VkbZtzSLI=[/tex][tex=9.857x1.286]eTUtshgu0UF/UcTpimd9tXW74WVeK/SVNk1qyz7Fh3O5HBLzGazN7j8T7opSgHuwhEo23NavHZqJ0j9E7QkBDVxSKVxpgG0hcdcOoTwzYJ/SrO2mM9F4A3OH0lCbTsM3J5eoyy4KVbcNixp2aKVECg==[/tex][tex=6.429x1.286]edbqP1oR1rtMuQ1/fXvwpacn+dByyrgMblJrVhH1Bho=[/tex],所以[tex=4.429x1.286]nnl0ut7dJ6b0ilMeKyplQyQpUlHuw4g/Tz3RoqNs83w=[/tex],故[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为反对称矩阵.

    举一反三

    内容

    • 0

      若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵,证明[tex=2.929x1.286]PgI7SwgsQ9tTXWFTdkSmxw==[/tex]为对称矩阵。

    • 1

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵,已知[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维列向量[tex=0.643x1.286]vYiGJJ9TAtvnQmM1PsOB8g==[/tex]是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的属于特征值[tex=0.571x1.286]B2ovqsb3k1n+9dueLzQ98w==[/tex]的特征向量,证明[tex=2.0x1.286]i0yIERCSBGtjCR9xuVKhzO+th90ztweXwQFKMlL2l3c=[/tex]是矩阵[tex=4.643x1.286]dWXy6ruRM7w0aj3g8UzA9zpVWc0P8UIDDZVojDBNofM=[/tex]的属于特征值[tex=0.571x1.286]B2ovqsb3k1n+9dueLzQ98w==[/tex]的特征向量.

    • 2

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,证明:[tex=8.5x1.286]OVfSjPYbleI4CXM/SroEQsA5SVXHwxRs1uhjCnT84Lj3TC7IkGcJnfuDR8k5ro+h[/tex],其中[tex=1.143x1.286]TvSdGE1Yfrol50wGLH8g9Q==[/tex]为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵.

    • 3

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实对称矩阵,证明:存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=5.357x1.286]K6zxAGBIogIIiD5GFofAx/pmcJwoRykyV8iSjArS8Ys=[/tex],[tex=4.929x1.286]UzUiBuTu85eC8sat7ufimOL6HcqebYAko5n7tYXBrwA=[/tex],其中[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]为对角矩阵.

    • 4

      假设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维随机列向量,而[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,证明:[tex=9.0x1.286]2oA4sX7FP/ySiHRnf5j+fiNGrpEdrI9ZgQDbtQSlAQOLguZgmhCwoMIEBih5Z4N1[/tex].