设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是斜对称矩阵当且仅当对于[tex=1.429x1.0]id8CqLD3sKgZOEL0mYn1xA==[/tex]中任一列向量[tex=0.643x0.786]SPoVA3bJlgfP9Ek9O4AbuA==[/tex],有[tex=3.571x1.143]Prw0L7uJ/bbBm5GTYZ6HIfXIkhPKaEJaPpuLa3Pkb6U=[/tex]。
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,证明: 1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是反对称矩阵当且仅当对任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex],有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex]; 2) 如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] ,有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵。证明:如果[tex=1.429x1.0]id8CqLD3sKgZOEL0mYn1xA==[/tex]中任意非零列向量都是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征向量,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]一定是数量矩阵。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是一个 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 级矩阵,证明 如果 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵,且对任一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 维向量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 有[tex=4.0x1.143]rLVONmXxLnhl8YaM4UacI9oY4xHCd5UxvQ2cXFY3Iyc=[/tex] 那么[tex=3.429x1.0]gDaSCeRv2nAY2ZKE6tr+4g==[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵,证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]有特征值,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值不等于0.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,证明:如果[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级上三角矩阵,那么[tex=2.571x1.143]0fnjW85PDzMA1plt4TcKcg==[/tex]与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]阶顺序主子式相等,[tex=5.857x1.214]I5SGjTr5mzU5Ceq/sb8fsMww7wbMal8t8RY5w2pUkfk=[/tex]。