证明: 设 [tex=2.071x1.214]MmeklMP/j6saWqycN/i3Z6f4PxINUzvl/cZhR6Tpp74=[/tex] 都是 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶正交方阵,则[tex=2.714x1.357]RRZ9zlAN4pWdGS7d9wHOksQIkUN+jWMfk9arM96kBXA=[/tex] 或 [tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex]
举一反三
- 证明: 设[tex=2.071x1.214]MmeklMP/j6saWqycN/i3Z6f4PxINUzvl/cZhR6Tpp74=[/tex]都是 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交方阵,则 [tex=5.571x1.429]317mMb/UfJBjZHDU7raSnlGWNv3TAfOvDYKp6rxGdYH/wkTdLKG3lnIOSFYz8youND3JkA/f56Zt6vj//KbUBaNtSDrFJ/TojTxEfphc2zw=[/tex] 也是正交方阵
- 设 [tex=2.071x1.214]MmeklMP/j6saWqycN/i3Z6f4PxINUzvl/cZhR6Tpp74=[/tex] 均为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶方阵,证明 [tex=1.786x1.0]96v/QovsZC+SUffULwqQnvkECUDsFAQTkNLNhDaRrpw=[/tex] 与 [tex=1.786x1.0]kvRlRS1CLNU1fC2siJ4VO2nX6gBe0vc1kFMLW9VYZjM=[/tex] 有相同的特征值.
- 设[tex=2.071x1.214]MmeklMP/j6saWqycN/i3Z6f4PxINUzvl/cZhR6Tpp74=[/tex] 是两个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵证明 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相似的充要条件是 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 有相同的特 征值.
- 设[tex=1.857x1.357]ia3PT7S23mLuw/0z6bGDsw==[/tex]是一组两两可交换的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶实对称矩阵. 证明,存在一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交 矩阵[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]使得[tex=2.714x1.357]wQpQ1hhvgo1t3lEispg9DU3/1gcTpHjWmg2WMHf8aN8=[/tex]都是对角形矩阵.
- 设 [tex=7.143x2.786]g+/KVfaQxdXa8hxnv147pHWU52BSD9LdtB9aAf9v+Sbw0blXLyIcHBU0jSX5ERGgSQrByRePHgOQ3Dstda1AfQKRafS7BreZoZMXKC8Vbf2UFrXzBeXPcDyK1mfGT//NllwrWZYMcqn7M6gzUNt+dxT4qlQcWezHyfAwkusJil4=[/tex] 其中 [tex=2.0x1.214]p/fPb4cKwKYaAJ8NhtZPtw==[/tex]分别是 [tex=1.929x1.0]FLsL1n4WDTNpV4dn6Kq2dg==[/tex] 阶矩阵 求证:若[tex=0.929x1.0]dS4Ce7aCn5Z2jKx4QASmCg==[/tex] 是正定矩阵[tex=2.071x1.214]MmeklMP/j6saWqycN/i3Z6f4PxINUzvl/cZhR6Tpp74=[/tex] 都是正定矩阵,反之也成立.