试用 矩阵位移法计算题[tex=3.643x1.357]aEyFAP8BeCbun9pto7GP/Q==[/tex]图所示连续梁,并画出弯矩图[img=337x395]179e035a0163eae.png[/img]
解[tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex]编号(题[tex=3.5x1.357]q1QFI4rZoQhYRvWa3+pDbA==[/tex]图)。[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex]单元刚度矩阵和定位向量。[tex=8.643x3.857]AtBUpWvNWMrVGLUspnimNXzJVDCeRJIM/0urSw0xEPGh4Mcar65O2IZr9RvCqozhTjlqgU4YM0iK5m02A9sjcWUtmGzHguUDrU29hXeIkMTMBrKEIevV3WDhWJsCDYZsqGZczz3sCBnLWmf5U3wEIBXyuggt59TcIFvSvbV3kSyMIqGP8HZ4WLkJAUlxRuj/6UI1MyIXKBXpe2UFskvQ2w==[/tex][tex=8.857x7.786]J07lmPbnZMoZ+MHGr37+Z1mGho0iMFA4pygXFiNUGCzMkt/mbyZ732YvocaX8/k3JLQ/K59esSMGTg/eN5oeQXLQf43AdrBDtjxMcTcntmIrgwg1BC7VLzl6DRhFSq0tu7yr4v03awxclzzRaV5OcOWxZw+DXouKkuUZoJuDNAD0aBj90H2nyKBqMPanpce1TXU/sOIZYVBoBNdXl3umvTJknONT3Zwl6H0PAVda0xE+3X+gNnxnHs8Bor5rw24zSfpdttC9yA+AiTGiXB7/pgm5P6yVQfCpFpZ2/yaEEc9vEfnnrdfZI/FHsg9A4aC97AJloC+r01F32arZb69EEiI/hRuKk7Y4GmlQljbc1/trF0Lc6otzCxgSGL6LAxAwLH2LwIXM2GUj3thH0IOnh/OCaVyFBomZvi4DB22vnX0=[/tex][tex=1.286x1.357]H6tHfFjOZ3ZWdB4qPQ9Ocg==[/tex]整体刚度矩阵。[tex=16.5x2.786]gfytBG75BrwNHeKgBKdRbRB+cVsnKaL5Jf16h5htWYsroXy2Y7HB51mHaNEb9EZlEUlqHyH2qgsQwuQ/u05b9JsHXg1u1Pa97cR+9/ZqgBU1GCd5LQjtsC8XoRXZH2XvpeOrHNByx9uPkCURAtRXZvKkED9AU5SOsYaC1rkK58eiU2qisS/sYhJ78N7OeQqv[/tex][tex=1.286x1.357]dF+j2ufB5JBOJwdIPfmkfg==[/tex]等效结点荷载集合进入[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]向量。固端力:[tex=23.071x5.214]xan3xsj+g3GRgaoucKzZe86vmyocFToZuFvNtDGsNm0vUWoHHg6xIR4UQ/MRY1cLyt/8DxcWTLMbePf5vWJsQTjbc8ELwvqFdoHdMwur1N3iPRmz0Px1O4H9aAr0ZWl4UJDue77czSdTJ6Yy5g4eWyJXi7WdQ98wSi/yH0/LXnwnY2bjEp7I7Moo/e/gRn4LDgJyCUkOZkdMdbPlHf6eh1gj8M4HjyyYWt3YmOEBCvC3mDSewPbFYbfxwrqMH4v39CVoC1r/lRCgRMyVg9hwm01n8aMTLhXoVS6WYj/t6XIjj99kphI2BP6Gi8+OJsm6TpiMNfo25qJ6CtV5dwWigVBLRgSldhc118G8gpCQsw7913+4fl0TdS6FZwBxX7yv[/tex]等效结点力:[tex=23.357x5.357]rPTlDp7EgGKmrdplGk5Z3P4+lcZXgauv51UJVqrA6vD/QuzeX3W3Ha8wGtSbQhbHujX2BWU/K5c/OHL2KEfcdetTbxVgEaRUrey/nu6bt5XOHStP0fETOLZUFt68PX8fQnocPyzsCgY+dzSH0iEox+V1QdWo3NPB7UzigPhQ4I7wGSgA2I+MyCE8bi+5+lbgpJrTx0IxXgfsQm/SzUKTL8Qe2LnSDSuBebAKJR+lkX39PsNaZAxdH3HRK4r3RsbWFPgbe90q9iui4EYOb/VoDkRYt2gxHHOaRxPHjWkkiwXwD2ha6o4ecysrtsdjcu/QRJ8kA/6wlSOvZNKovcUw4YEL4p/qWtOASu7v0q0xhAM=[/tex]集合进入[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]向量,得[tex=6.571x5.214]voMsmPUnkKaf9u+uf6vo03P1RIvMLfmOfzTigYbl7h5hwMjgDu/2AGM7HfT4FKM0pNYQCoEJGBg4sCyQteKsLfmu398wTt4ifyLP4YmDiXI=[/tex][tex=1.286x1.357]VHgv8yVrrSZwLqu1l6FPnQ==[/tex]基本方程。[tex=14.643x5.214]jcCMHflCR8OS9TosV6N5vFZulSKsNFMP04e35jfDqZe6mSCK9j9VGQy+Z+Y0Q2TH9UwyWPuEeyOMtnrrSIQnb2vsoLKks4knLvL8xFAc55FfUbHPNjIeEmkKTT0OitCUAcYmJwmF77585FQfCf23MBuZalN8RUQ3TTf/QPYQAfnkNCwQglXVmb4lQxsCprI61Y2l3nxTgrzNXUHrgcE40RgT9XCDaXon3kKTnFB3nK1b5jLomhzl4T7XOYiQsWdzy/buwEfBAlot8DopZQGLcg==[/tex][tex=1.286x1.357]gfNg2L7OjFhF/G4XiUhPGA==[/tex]解方程求位移。[tex=9.286x5.214]jcCMHflCR8OS9TosV6N5vF8ZJ6jjY8J4rPIsWtAnU+RflizTbh/VgPmLHVNDHbn9CslaW8removT3LR/wp18x/g422LmbVtcrg6SbmSEg2/pgQpH/ezowBoscYbJUNhZS5T2fmiyN25JdmlIbo/4NpgFGp4O6yjTYHvWRWivo7rfRUuq4g4LyavGzGe9XDJ9[/tex][tex=24.643x5.214]wlbBHullrgQlAaC6hNl3Tp5UOYpzJbAaJnIEzgyY/dwyZUPzzkbU+Sx5sEMdG2t0sRVef4DHn50cVIij0ga+/HYG6KIKvKd/3EeqRHWxdJSoDcfIpwbcM0NR8lUAuf+qz+o50eGm+/H57KpFlu1mFbLfjoLn83rTE56kHPSWPXAMx8J/kiKshb3ymrLAZWSF7CAszP3Jz2D44tvYXP2kFjLv/MoX8SDKhSNjLO/KPJC2ElElFXVzxYKxtpFCwJLWX26D2P4p5Zn7zsAdK8YqTSxNk70v5BsEtj5pe61wzCbP2Ta7AInqVaqkTKK1aDwZtWKkC6WxHoHnzhPmEy8cWbJNIKtTqZkiu4lTeGL93U4=[/tex][tex=1.286x1.357]ncB3lscmG9Sz2mpkMcAnYg==[/tex]杆端力。[tex=24.429x15.643]xt4R6G+aBQ0iMmySU8ZF+VAI5gy9IP51GCLIckRTgU2Iu96qzuvgZH6wn7JLz/TUTebwuRqzEmw7uTF6ijV1huxPzSmJCfPYyom03N0KewWOaxUvXew1PhO2KUqDJUjHJJ21aiEoYarXyVSSk2Nn0pTh/+zoOOxJTawRXH8F/aoaBhGWdQUFXZZB5FxiMKpJwiIHBR4k/oxufKOx3m35PHdblG3VnNa5fOXVrHrIG7HCNNsTU8a4+/Ttj0hSPT2Xw7mteMfAuVSuM+5v/KBjoJjfX5JcG0oywUGQdWwH09gBbl5kzjun+3OEDJumA6W3OeSH3aArQrIlQYxIYvsYYnp/Tyg3nJVbw+S2FaXJvYEZhE+HdGFcOA/umcQlV8bDjcZyoA83Fxx8sN7h2RptttEGTBKCskM5KpWtvqAHgP1HcIGCteW3rrp7JrOE6L3pb4UGwoii2JKfR0hAfLfY6Naax0WLGYchZgMhV/XgGnxxWvzUSewDsm3xnW3acPuSEGXH6FAlIox7PsgmcqwJid+Yp3hZMhd/KgR7fvkp5/ubH9Qe4cPkEZDyvn8AOYysTd0iR3nkoXrmBv1rrzBiAdR+wXwqNUwgP4J8oWv9QXcv9+K75DW8HKDBASHVQL6L149dM8OCX5o3aYopHyT1vAHpTuaz0HThHqR6g/pW3fmODmKASX4yU2Mt4lZsXQdGtRGGfYPLFEr5LlwC5z7V+sFHWPUJNdFCx6/NoLQZENVwAML7w8W5mIuCWXgJVmVhFyrb66HDe1Jor5wX7iP5p4mZNwvGfZIK7mdy6C+HDa3TryRqB6hsL7Cvr6YpxN+LBQ/elBapJkAyuuP6VP/cKw8mWuLDttS+K6ELxGHgx/MCFitiCuj+oMKSqFbhSV4sAUmbtNQouJrMEhCfcTSHYIMuf05e5jaRjJWKxEP9O6bW/pjHEufUHnrlWVQWIop+4+h7QRfYaMt6iNiPmSICKBAyMldRIulv+RordgNnk2k=[/tex][tex=1.286x1.357]sqV5tTCpLJgLyLVeZWSxyA==[/tex]弯矩图(题[tex=3.5x1.357]mCuWIO/nK+a/0QMOc+2zUg==[/tex]图).
举一反三
- 试用矩阵位移法计算图示连续梁, 并画出弯矩图。[img=469x155]17cfd9a4d5d5157.png[/img]
- 用矩阵位移法计算图 (a)所示连续梁,作弯矩图。各杆[tex=4.571x1.286]NSKjTj7psZYdOS6Y0a7ZyA==[/tex]。[img=581x165]17a04a412554434.png[/img]
- 用位移法计算图所示连续梁,作弯矩图和前力图,[tex=2.0x1.0]C1eXktko86a0BBkBgiRJ8Q==[/tex]常数[img=450x214]17a333fcdc035fa.png[/img]
- 用位移法计算图所示连续梁,作弯矩图和前力图,[tex=2.0x1.0]C1eXktko86a0BBkBgiRJ8Q==[/tex]常数[img=448x216]17a3346d8742bd1.png[/img]
- 试计算如题[tex=3.643x1.357]MAzjgHlm7Sd7h/6lX8M1gQ==[/tex]图、图所示连续梁的结点转角和杆端弯矩。[img=343x296]179e016b43c9e44.png[/img]
内容
- 0
试用力矩分配法计算题7-3图a所示连续梁,并绘制弯矩图。已知各杆弯曲刚度[tex=1.357x1.286]/iL/B4wMZRZQHTlB2tPOsg==[/tex]为常数。[img=747x137]179f0cb8553d684.png[/img]
- 1
用位移法计算图 [tex=2.5x1.286]qcXNFnn0mBf8dG6dZ5FQmg==[/tex]所示刚架,并绘制弯矩图。[img=725x435]179c5e24eb9c3a1.png[/img]
- 2
试计算如题[tex=3.643x1.357]DlTcbYQH4Nw5nl5p7Shv2g==[/tex]图所示连续梁的结点转角和杆端弯矩。[img=337x259]179e027ec83abed.png[/img]
- 3
用位移法计算图[tex=2.643x1.357]/9g8hOzinoS/pIcKu0S0rQ==[/tex]所示刚架,并绘制弯矩图。[img=711x409]179c5db5bc9875d.png[/img]
- 4
用位移法计算图[tex=2.5x1.286]qvRTqiXI0mtmxivWvFMVRg==[/tex]所示对称刚架,并绘制弯矩图。[img=746x329]179c5dd47f61e06.png[/img]