• 2022-07-01
    求下列函数的上下凸区间及拐点[tex=2.857x1.5]Y/csT2wAng3TrIsrEYW/Fs9sq+eDg2HXvL1XTjxYppA=[/tex]
  • [tex=14.286x1.643]9Zt3a/1TlJvkRyFkB4nJuP8+hCbG+WaGf5IDXfxXCh0/r+13zV0Lce/7PTdKNyF+fBpuR7fH3yJfPgLsVdw6Jra5wEyy7OQRxlXCFF2UgPYctV27dsAQLMF1001GVe2y[/tex]  令[tex=2.571x1.357]rjzw0bBUODiY66l+Mq83xFVMJa9AOIZPnr+1exya8kc=[/tex] 得[tex=4.214x2.643]XJReDsgzhEjebp9m18W/Xd0DKWzrCnLc0HDGjCuU5X4=[/tex][tex=7.929x3.357]zPLPjFYQ4mQ2fmWRMMNGOnBikUvYz52QphOK8zbffcusscBI82J00xh8MIAvvDyJzk8JYHHfjTDeuI96zSNsAA==[/tex] 时, [tex=11.071x3.357]eE9dXkpN2effVrNkAbXJmM6TdLI1TYIQjuJepLBZ0WWx+qKFPOu74/cjnAXNzA8/Mc3j5qb2LCUMysw+MEioOvI93RsSC6Ls2PRrRlPq5g0=[/tex] 时, [tex=2.786x1.357]rjzw0bBUODiY66l+Mq83xNVQC2fEZIREDheW9ftWTGk=[/tex], [tex=7.071x3.357]aLE5JUgvrJGZga++HNGdqUSw7AqzVZfcLZCkGuPxaNQYabrB3DNAo/dvJkh7M/1m[/tex] 时,[tex=2.786x1.357]rjzw0bBUODiY66l+Mq83xBBUZAg8QpM4pn2PLLc+3L4=[/tex],故上凸区间为[tex=7.0x3.357]JH6dQwirShE8V9E13B0yMP+rQRtgaAkxAPAL3R7Gqa2VnaJ9ziI7OPrfZEQIMNZaMaAk2fGlKYFe9i16CLdgxg==[/tex] 下凸区间为 [tex=12.714x3.357]gKi8iE2cBajrtwG25HWN/UodabGpUVsc7rbcaMI8AJ5FSCrCys9Xpn55LRQSWF/gCiFNSJabpBelaoXjL42A+BQD5lOnGhMXzDKhUHRPrttHS+EhjzHUTfW2Dx3Wvqq4[/tex][tex=4.214x2.643]XJReDsgzhEjebp9m18W/Xd0DKWzrCnLc0HDGjCuU5X4=[/tex] 时, [tex=3.071x1.571]TqKRLylH0hZeS47YwFqExzQ4x2EAH2twP9ihWslpCDg=[/tex] 故拐点为 [tex=12.286x3.357]JH6dQwirShE8V9E13B0yMFECwd6HGh8zL6VigcqsEPdUfqtZvqYZGKI0s0OWisqqFoDQBiQld1hDlxCn1toxYHZW2z1mP4nmjp/gHwWH9TQMuwYdy1kJYyRi6kjlb7ehXwrksJIPBaPP4ililMiUdQ==[/tex]

    内容

    • 0

      求下列函数图形的拐点及凹或凸的区间:[tex=4.143x1.286]fl2nZz9E3iRCmBVdnpwBXQj/p0tLmvJ//jAwAqbG5A4=[/tex]

    • 1

      求下列曲线的凸性区间及拐点:[tex=3.286x1.357]lb60kruRaOSEcg47n3nZzw==[/tex]

    • 2

      求函数图形的拐点及凹或凸的区间[tex=6.071x1.571]zGWxI6NEgTymOoyE91Uzh2+ONE3Gl/qnTDljPCs9Bg0=[/tex].

    • 3

      已知函数[tex=6.786x2.357]zJ0fiAUmkK9JgcJtlOlNv9zhiYp0GUhvvG3qP32SZRWN009W6ac/joAgnZe+2LR0[/tex],求(1) 函数单调区间,函数极值;(2) 函数图形的凹凸区间,函数图形的拐点。

    • 4

      求函数[tex=4.286x2.0]g/Gf6R+BhksbNRozIpuY0ygarcrlTP9e7iNySVB+ilg=[/tex]的上下凹凸区间即拐点 .