A: \( {1 \over 6}\)
B: \( {1 \over 3}\)
C: \( {1 \over 2}\)
D: \( {1 \over 4}\)
举一反三
- 设D是由\( {x^2} + {y^2} \le 1 \) ,\( x \ge 0 \) ,\( y \ge 0 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) =( ) A: \( {1 \over 5} \) B: \( {1 \over {15}} \) C: \( {2 \over {15}} \) D: 1
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
- 设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
- \( \lim \limits_{x \to 0} { { x - \sin x} \over { { x^3}}} \)=( ) A: 0 B: 1 C: 6 D: \( {1 \over 6} \)
内容
- 0
曲线\( y = (x - 1){x^ { { 2 \over 3}}} \)的凹凸性,说法正确的是( ) . A: 在\( ( - {1 \over 5},0) \)内为凸,\( (0,{1 \over 5}) \)内为凹 B: 在\( ( - {1 \over 5},0) \)内为凹,\( (0,{1 \over 5}) \)内为凸 C: 在\( ( - \infty , - {1 \over 5}) \)内为凸,\( ( - {1 \over 5}, + \infty ) \)内为凹 D: 在\( ( - \infty , - {1 \over 5}) \)内为凹,\( ( - {1 \over 5}, + \infty ) \)内为凸
- 1
四个选项中是广义积分的为( )。 A: \( \int_0^1 { { 1 \over x}dx} \) B: \( \int_{ - 1}^0 { { 1 \over {x - 1}}dx} \) C: \( \int_{1}^2 { { \ lnx}dx} \) D: \( \int_{ - 1}^0 { { 1 \over {\sqrt {1 - x} }}dx} \)
- 2
将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 3
下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)
- 4
曲线\(y = \cos x\)在点\(({\pi \over 2},0)\)处的曲率为 ( ) A: \({1 \over 2}\) B: \(0\) C: \(1\) D: \(2\)