• 2022-07-01
    设 $X$ 为连续型随机变量,其概率密度为 $f(x)$,则数学期望 $E(X)=$( ).
    A: $\int_{-\infty}^{+\infty}f(x)dx$
    B: $\int_{-\infty}^{+\infty}xf(x)dx$
    C: $\int_{-\infty}^{x}f(x)dx$
    D: $\int_{-\infty}^{x}xf(x)dx$
  • B

    内容

    • 0

      下面积分收敛的是 A: $\int_0^\infty \frac{x^{4/3}}{1+x^2} dx$ B: $\int_1^\infty \frac{dx}{x \sqrt[3]{1+x^3}}$ C: $\int_1^\infty \frac{1}{x} dx$ D: $\int_1^\infty \frac{\arctan x}{x} dx$

    • 1

      连续型随机变量 $X$ 的分布函数为 $F(x)$ 与 密度函数 $f(x)$ 之间的关系为,对任意实数 $x$ 有 $F(x)=P\{X\le x\}=$( ). A: $0$ B: $1$ C: $\int^{x}_{-\infty}f(t)\mathrm{d} t$ D: $\int^{+\infty}_{-\infty}f(t)\mathrm{d} t$

    • 2

      下列广义积分收敛的是( )。 A: \( \int_1^{ + \infty } { { x^{ - 3}}dx} \) B: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } {\cos xdx} \) D: \( \int_0^2 { { 1 \over { { {(1 - x)}^2}}}dx} \)

    • 3

      下列函数在指定区间上不一致连续的是哪个? A: 函数$f(x)=x^2$在$(-\infty,+\infty)$上 B: 函数$f(x)=\sin x$在$(\infty,+\infty)$上 C: 函数$f(x)=\sqrt{x}$在$[0,+\infty)$上 D: 函数$f(x)=\cos(\sqrt{x}$在$[0,+\infty)$上

    • 4

      二维连续型随机变量 $(X,Y)$ 的分布函数 $F(x,y)$ 、密度函数 $f(x,y)$ 及概率之间的关系正确的有( ). A: $F(x,y)=P\{X\le x,Y\le y\}$ B: $F(x,y)=\int^x_{-\infty}\int^y_{-\infty}f(s,t)\mathrm d s\mathrm d t$ C: $F(x,y)=\int_x^{+\infty}\int_y^{+\infty}f(s,t)\mathrm d s\mathrm d t$ D: $P\{(x,y)\in D\}=\displaystyle\iint_D f(x,y)\mathrm d x\mathrm d y$