设函数$y=f(x)$在$(0,+\infty)$内有界且可导,则
A: 当$\lim_{x\to+\infty}f(x)=0$时,必有$\lim_{x\to+\infty}f'(x)=0$.
B: 当$\lim_{x\to+\infty}f'(x)$存在时,必有$\lim_{x\to+\infty}f'(x)=0$.
C: 当$\lim_{x\to 0^+}f(x)=0$时,必有$\lim_{x\to 0^+}f'(x)=0$.
D: 当$\lim_{x\to 0^+}f'(x)$存在时,必有$\lim_{x\to 0^+}f'(x)=0$.
A: 当$\lim_{x\to+\infty}f(x)=0$时,必有$\lim_{x\to+\infty}f'(x)=0$.
B: 当$\lim_{x\to+\infty}f'(x)$存在时,必有$\lim_{x\to+\infty}f'(x)=0$.
C: 当$\lim_{x\to 0^+}f(x)=0$时,必有$\lim_{x\to 0^+}f'(x)=0$.
D: 当$\lim_{x\to 0^+}f'(x)$存在时,必有$\lim_{x\to 0^+}f'(x)=0$.
举一反三
- 5.关于函数极限,给出以下结论:① 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{2}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;② 若$\underset{x\to 0}{\mathop{\lim }}\,f({{x}^{3}})=A$,则$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$;③ 若$f(x)$是周期函数,且$\underset{x\to 0}{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$;④ 若$f(x)$是周期函数,且$\underset{x\to \infty }{\mathop{\lim }}\,f(x)=A$,则$f(x)\equiv A$。其中正确结论的编号是 A: ① ② B: ③ ④ C: ① ③ D: ② ④
- 2.设$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)$存在,$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g(x)$不存在,则( )。 A: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都不存在 B: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$一定都存在 C: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)g(x)]$ 及$\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{g(x)}{f(x)}$中恰有一个存在 D: $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)+g(x)]$ 及 $\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,[f(x)-g(x)]$一定都不存在
- 设函数y=f(x)在(0,+∞)内有界且可导,则______. A: 当f(x)=0时,必有f(x)=0 B: 当f'(x)存在时,必有f'(x)=0 C: 当f(x)=0时,必有f'(x)=0 D: 当f'(x)存在时,必有f'(x)=0
- 3. $ \lim_{x \to 0^+}( \tan x)^x=$ A: $1$ B: $0$ C: $+\infty$ D: 不存在
- 设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$