• 2022-06-30
    在曲线[tex=2.786x1.286]Xv1ex0v791LL5e/JRFQi6g==[/tex][tex=3.071x1.286]pl3k1MQDU8orGzTuABqYLJgVzKz7gyXj/NymwRGPF9U=[/tex]上一点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]处作切线,使得切线、曲线及[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]轴围成的面积为[tex=0.714x2.0]4zbOnagufiP9A9SEx1irp2aj2tHhDhbc3DOVA6StjIU=[/tex]。求(1)切点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]的坐标;(2)过切点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]的切线方程;(3)上述平面图形绕[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]轴旋转一周得到的旋转体体积。
  • 解:设切点为[tex=3.214x1.286]hgX5KLgeXaqGBlq/qD36ouLq49D23SjOuFozyPDZzSCzDc9OEruRsEaWQZtOqK2p[/tex],则过[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]的切线为[tex=9.071x1.286]BDn0EvnWH7Y3PHNs7L6Eg/tt2PCRHsvFO/mSiUH3P3IXxeturj50VI179ixPHrWu[/tex]因此切线与[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]轴交点为[tex=3.214x1.786]2BjxWQqk6BAWzPF0Dv1mM/9XsiUrvzbHUa/M4vC2yDD8A0fEe17Rh6UkM3lTK8TE[/tex],故所围平面图形面积为[tex=7.429x2.643]zxd5cHUeIXd0riTuJd6ylxlM8Y2mOVGPc//ddTWtnlP7XIIPH6DNJ0LYdwenmBhtMRiohb1rtCImGhEWcAW18A==[/tex][tex=9.143x2.0]I8kI+cBq2WWAsCtb8Axv+08GuIriYiieMTMHnqB60gDdIKEaPQxt1YE+x78bUYEjI2icSGzJ8Zv4kgdQGA9kf09DP+WNb2T7pk39feY1B44=[/tex]由已知,[tex=7.5x2.143]rAbFJgrGMUOLPD+siaTIXFiTykne/h6dDRYfV8sdPaEBuL9ePZbRxaYS88egfRbgUHvw+IdJcWdTeEqDOKYG9w==[/tex],故(1)[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]点坐标为[tex=2.143x1.286]v2wxUhEHgcEtjazZG/KOoQ==[/tex](2)过[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]点的切线为[tex=5.214x1.286]D2ah5nzLP/yQXJZ6xbrfJA==[/tex](3)[tex=17.071x2.786]KZWiKS95F5LsA8mMCJlC1JQ+eUkXXd7h13WVFdLLV/njaFl69EUiToA7i2f7ZdMDvcBLk2VQLLrvBrotCXftgEkMSorX2ptqH5xEot0wP1F5ctQYEEPCYEAFleMk9TM4z0+BfVwbepgG8U2LT8VMVA==[/tex][tex=7.786x2.357]iM/MPRRyaisCwmvFVA1eQQjVHqd8cVKN2fWKaMjUKxDc2zwNIw3rIiFNwED1kWM1qjKGkXtwHH65+BTF1Vm6/A==[/tex]或[tex=10.786x2.786]KZWiKS95F5LsA8mMCJlC1BUtMtGi+Hh6zdvijZqJce2elOI3+Jg+SJR5fBHHAX1eUakhJ1xFqSJExUIoeUmXVaNmZ8lqtR8eV6DfQjG6hu40FzUmNZo8HLS5uP93N4xP[/tex][tex=8.786x2.357]BvjeJEOSiybnKLP+jL3/zdE/f0VofDRj4DZAPKBdwU8hbil2QpVEefYuFyF7h0R6O/KapguUMVUXzGtj5YaRiA==[/tex]。

    举一反三

    内容

    • 0

      设二维随机变量[tex=2.786x1.286]vzGOG+JNlRurOKCm31T4Kw==[/tex]在圆域[tex=5.357x1.286]oOYTzm/NiJqJo4OjC55er1L5z17HiYuK5dHQrlDB2IM=[/tex]上服从均匀分布,(1)求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的相关系数[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex];(2)问[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是否独立?

    • 1

      设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .

    • 2

      过曲线[tex=5.429x1.5]Sk1LHo1scb9wXW4lE6QCJA==[/tex]上某点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]作切线,使之与曲线及[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围图形的面积为[tex=1.286x2.357]iy7ZjKKJQIvT3NKLAZNJVw==[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的坐标及过点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的切线方程;(2) 求上述平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转的旋转体体积.

    • 3

      求由x轴、曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]及曲线[tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex]过原点的切线所围成图形的面积, 并求该图形分别绕x轴与y轴旋转所得旋转体的体积.

    • 4

      求抛物线 [tex=4.071x1.429]hl4JpLynrxmqrmVdtohNfg==[/tex] 与它的通过坐标原点的切线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转所得的旋转体的表面积. 解 设切线为 $y=k x$, 它与抛物线的交点 $(x, y)$ 满足$$y=\sqrt{x-1}, y=k x, \frac{1}{2 \sqrt{x-1}}=k$$