试作适当变换,把下列二重积分化为单重积分:[tex=10.214x2.643]w5AxqAhEmB/npgLcoCxeKq0GAeChvYFKd1NroNmW4jo0T+1g/4w4fy9ISalRsqc2YR2ebcvMtjZwBket3kYWyg==[/tex], 其中, [tex=0.857x1.0]nFZS78e5wCWJ2ZClZqqa4Q==[/tex] 为圆域 : [tex=3.929x1.429]DuMOJW/S/GnRx/nZatcEl2PA7NEL+Bf+5musSwORMYI=[/tex].
举一反三
- 试作适当变换,把下列二重积分化为单重积分:[tex=7.571x2.643]zjFlixdN2jXWfeb7LsPzoiHJEWY2U0zHWAxdGRggP0c=[/tex], 其中, [tex=9.786x1.357]HU0gnDhtMgx9mPBg5UfYA6dnOZxJ+pS2dWB186OKPJrzK1u+cGygaFzvjyY+SFPn[/tex].
- 试作适当变换, 把下面重积分化为单重积分.[tex=8.357x3.571]h+Ma+TyC/ROodcIlT5RkdhO8cm7aZQPECJcqPxd6vXpWPPFBQtf0rfGmjtQ8n80p7ba9Y5VexmuLzq2JX8ofRVG8WEgxikJIs2Hy3PlTIZA=[/tex].
- 试作适当变换, 把下面重积分化为单重积分.[tex=10.786x3.571]h+Ma+TyC/ROodcIlT5RkdmMpygHYGqONDobwvwifiPJupadoCvXMTYSazlVP2vLHTbOHtx2qhKlU22yqE3hEL8eCxiZ7vvzMtiBSzm10qQS0QTuUa7rO0vakISqj9+BWwOyZZ8DcSDHO7yH048Km7Q==[/tex].
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]