已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的指数分布. 问 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 取何值时概率 [tex=6.143x1.357]fQPkbF7c7INK7fgYLkNjcg==[/tex] 最大,并求出此最大值.
举一反三
- 设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布,已知 [tex=8.286x1.357]JeJ8/6RX20sm9ZglY4Lbw3wZNaRTmLyH4AoPcax840w=[/tex], 求 [tex=3.786x1.357]7ZO21koX9AnR4jF5g8z0Lw==[/tex]。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布。求 [tex=5.286x1.357]t2WmSWvTpZdqSQbDpk4HSg==[/tex]
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布,且[tex=8.286x1.357]LDgHReRZVA5QzpAkFsm37LX8N2D5xQRN5085qpjSnhc=[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 1 B: 1/2 C: 1/3 D: 1/4
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]