举一反三
- 设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布,已知 [tex=8.286x1.357]JeJ8/6RX20sm9ZglY4Lbw3wZNaRTmLyH4AoPcax840w=[/tex], 求 [tex=3.786x1.357]7ZO21koX9AnR4jF5g8z0Lw==[/tex]。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布。求 [tex=5.286x1.357]t2WmSWvTpZdqSQbDpk4HSg==[/tex]
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布,且[tex=8.286x1.357]LDgHReRZVA5QzpAkFsm37LX8N2D5xQRN5085qpjSnhc=[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 1 B: 1/2 C: 1/3 D: 1/4
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
内容
- 0
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从 [tex=4.286x1.571]dLH4dnAsmyeDywcKghZwQyDLTiUD+F3eG0hmMN6BZuQ=[/tex] 问 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 取何值时,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的值 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 落在区间 (2,3) 的概率最大?
- 1
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 2
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布,且已知 [tex=8.357x1.357]wHpXUk0c5mheSwYx0OJEnfSFX3moi+ekMZxdxLfcnDE=[/tex],则 [tex=1.429x1.0]N94VZgwmhqIhw0m0w320iw==[/tex][input=type:blank,size:2][/input]
- 3
设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的指数分布,且 [tex=6.571x1.5]NHZnFIZT9Elz26jt2mljx1BbuFLYoAK0hoT2SYT1e2s=[/tex] 则 [tex=2.857x1.214]DmgVgUUyKr7LVU6Cik+Ygg==[/tex][input=type:blank,size:6][/input].
- 4
假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?