设 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的互素多项式, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 证 明: [tex=5.571x1.357]PkkJLskuqnzenCgr7Er6Z4U05aFFBLMUe5O1pLjlHE4=[/tex] 的充要条件是 [tex=8.929x1.357]2fPACztYZu8XzmX1s58aNh3dtcrBym1Xp8meH+Z5pC4=[/tex]
举一反三
- 设 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的互素多项式, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 满 足 [tex=3.571x1.357]wBo7jlbWkIE/7DwPqhzRoA==[/tex], 证明: [tex=2.071x1.357]rp59L9PX0S2MMXkUXRuI+w==[/tex] 是可逆矩阵.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为 3 阶矩阵,且[tex=2.643x1.357]UmLV2A1CdZWQv7CRGUJlsA==[/tex],则[tex=2.643x1.357]KoGZ1RDPPY3DFvVdN0xWqg==[/tex]( )。 未知类型:{'options': ['4', '8', '16', '32'], 'type': 102}