举一反三
- 设 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的互素多项式, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 证 明: [tex=5.571x1.357]PkkJLskuqnzenCgr7Er6Z4U05aFFBLMUe5O1pLjlHE4=[/tex] 的充要条件是 [tex=8.929x1.357]2fPACztYZu8XzmX1s58aNh3dtcrBym1Xp8meH+Z5pC4=[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵,且满足[tex=7.286x1.5]don22hM0FLkfIFASwvstacWj4l9ufYh2zpqW1mHjUjA=[/tex]则[tex=3.857x1.357]MSvIjHOmBElTvuTQXmtV5w==[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵.证明:如果[tex=1.429x1.0]0Cf4D4T9TapBdxwg6xMRmA==[/tex]中任意非零列向量都是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征向量,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是数量矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级矩阵, 证明: [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 的特征多项式的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个复根的和等于 [tex=2.786x1.357]ApBtKiFHAOgbksEzlkUgQb0P7vZ4TEOJWYYit3gGoiM=[/tex] [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 个复根的乘积等于 [tex=1.643x1.357]3GUtP1KRCaX9J7Wil+ASkA==[/tex]
内容
- 0
设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 满足 [tex=2.714x1.214]+ZPJntj7xYfllBYE3zVGBw==[/tex],证明(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆;(2)[tex=9.786x1.357]06AJfdzBDu7SdZ9anbGLIPmuCvp8KJZXpIhBloDxMHk=[/tex] .
- 1
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上一个可逆矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值不等于0.
- 2
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为 3 阶矩阵,且[tex=2.643x1.357]UmLV2A1CdZWQv7CRGUJlsA==[/tex],则[tex=2.643x1.357]KoGZ1RDPPY3DFvVdN0xWqg==[/tex]( )。 未知类型:{'options': ['4', '8', '16', '32'], 'type': 102}
- 3
设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且 [tex=3.857x1.0]M9rQvfhGD5Rd9PNzTpEW+Q==[/tex], 证明:[tex=13.143x1.357]ONCV/AVv5G/L3+FJjeO5qEtcHl8nrWQB2RRSEMXT5yVFoZthZ6A1mMaHolX5F0Saj3fsn6piB0bcnlFQshzmuA==[/tex]
- 4
证明:如果数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]满足[tex=5.357x1.143]XlxdG2gA4Km2raKQVBsTFQ==[/tex].则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不可逆.