对于对偶问题基本性质的描述,下面哪一个是正确的()
A: 对偶问题的对偶不一定是原问题
B: 对偶问题任意可行解所对应的目标函数值是原问题(求最大值)最优目标函数值的上界
C: 若对偶问题有最优解,则原问题可能为无界解或无可行解
D: 若原问题为无可行解,则对偶问题一定为无界解
A: 对偶问题的对偶不一定是原问题
B: 对偶问题任意可行解所对应的目标函数值是原问题(求最大值)最优目标函数值的上界
C: 若对偶问题有最优解,则原问题可能为无界解或无可行解
D: 若原问题为无可行解,则对偶问题一定为无界解
举一反三
- 【单选题】原问题与对偶问题的解的关系不正确的是() A. 若原问题有无界解,则对偶问题无可行解 B. 若对偶问题无可行解,则原问题有无界解 C. 若原问题和对偶问题都有可行解,则这两问题都有最优解,且最优解的目标函数值相等 D. 若对偶问题有可行解且原问题无可行解,则对偶问题有无界解
- 关于线性规划的原问题和对偶问题,下列说法正确的是( ) A: 若原问题为无界解,则对偶问题也为无界解 B: 若原问题无可行解,其对偶问题也无可行解 C: 若原问题存在可行解,其对偶问题也一定存在可行解 D: 若原问题有最优解,其对偶问题也有最优解
- 关于线性规划的原问题和对偶问题,下列说法正确的是() A: 若原问题为无界解,则对偶问题也为无界解 B: 若原问题无可行解,其对偶问题具有无界解或无可行解 C: 若原问题存在可行解,其对偶问题必存在可行解 D: 若原问题存在可行解,其对偶问题无可行解
- 试用对偶理论讨论下列原问题与它的对偶问题是否有最优解?【图片】 A: 原问题有无界解,对偶问题无可行解 B: 原问题有最优解,对偶问题也有最优解 C: 原问题无可行解,对偶问题也无可行解 D: 原问题有无穷多最优解,对偶问题也有无穷多最优解
- 关于原问题和对偶问题描述正确的是( ) A: 若原问题存在可行解,则其对偶问题也一定存在可行解; B: 若对偶问题无可行解,则原问题也一定无可行解; C: 互为对偶的一对线性规划问题,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; D: 任何一个线性规划问题具有唯一的对偶问题;