在F[x]中,若g(x)|fi(x),其中i=1,2…s,则对于任意u1(x)…us(x)∈F(x),u1(x)f1(x)+…us(x)fs(x)可以被谁整除
举一反三
- 在F[x]中,若g(x)|fi(x),其中i=1,2…s,则对于任意u1(x)…us(x)∈F(x),u1(x)f1(x)+…us(x)fs(x)可以被谁整除?() A: g(ux) B: g(u(x)) C: u(g(x)) D: g(x)
- 【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
- 若(f(x),g(x))=1存在u(x),v(x)∈F[x],那么u(x)f(x)v(x)g(x)等于多少
- 3. 下列各对函数$y=f(u), u=g(x)$中, 可以复合成复合函数$y=f(g(x))$的是( ). A: $f(u) = \sqrt {{u^2} + 1} ,\quad g(x) = {{\rm{e}}^x}<br/>$ B: $<br/>f(u) = \arccos (1 + 2u),\quad g(x) = 1 + {x^2}<br/>$ C: $f(u) = \sqrt {u + 1} ,\quad g(x) = \sin x - 3<br/>$ D: $<br/>f(u) = {\ln ^2}u,\quad g(x) = \arcsin x<br/>$
- 若(f(x),g(x))=1存在u(x),v(x)∈F[x],那么u(x)f(x)+v(x)g(x)等于多少?() A: 0 B: 任意常数 C: 1 D: 无法确定