将4个不同色的球随机放入4个盒子中,每盒容纳球数无限,求空盒子数的数学期望(保留两位小数)
1.27
举一反三
- 将4个不同色的球随机放入4个盒子中,每盒容纳球数无限,求空盒子数的数学期望(保留两位小数)
- 将 3 个球随机放入 4 个盒子中(假定盒子充分大),求没有球的盒子数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布律.
- 将个球随机地放入个盒子中,求每个盒子最多有一个球的概率;5592b6d3e4b0...81f2f397664541e8.gif
- 将[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]个球放入[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]个盒子中去,设每个球落入各个盒子是等可能的,求有球的盒子数[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的数学期望。
- 将[tex=0.643x0.786]mz5xwysszIT+Zv8SWiQSKQ==[/tex]只球放入[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]个盒子中,设每只球放入各个盒子是等可能的,求有球的盒子数[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的期望.
内容
- 0
将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]——任意 3 个盒子中各有 1 个球.
- 1
将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]——任意 1 个盒子中有 2 个球,其它任意 1 个盒子中有 1 个球.
- 2
将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]——任意 1 个盒子中有 3 个球.
- 3
把3个球随机地放入5个盒子中去,每个盒能容纳的球数不限,则恰有3个盒子无球的概率为()
- 4
将 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 只球随机地放到 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]个盒子中,每个盒子可装任意多个球,每个球以相同的概率落入每个盒子中,求有球的盒子数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望.