(最优准则)若原问题的某一个可行解与对偶问题的某一可行解的目标函数值相等,则它们分别是原问题和对偶问题的
举一反三
- 【单选题】原问题与对偶问题的解的关系不正确的是() A. 若原问题有无界解,则对偶问题无可行解 B. 若对偶问题无可行解,则原问题有无界解 C. 若原问题和对偶问题都有可行解,则这两问题都有最优解,且最优解的目标函数值相等 D. 若对偶问题有可行解且原问题无可行解,则对偶问题有无界解
- 如果原问题和对偶问题都有可行解,且存在该可行解对应的原问题与对偶问题目标函数值相等,则他们分别是原问题和对偶问题的最优解。
- 假如X是原问题的可行解,Y是对偶问题的可行解,而这两个可行解对应的目标函数值恰好相等,则这两个可行解分别是原问题和对偶问题的最优解。
- 在对偶问题中,若原问题与对偶问题均有可行解,则()。 A: 两者均具有最优解,且它们最优解的目标函数值相等 B: 两者均具有最优解,原问题最优解的目标函数值小于对偶问题最优解的目标函数值 C: 若原问题有无界解,则对偶问题无最优解 D: 若原问题有无穷多个最优解,则对偶问题只有唯一最优解
- 【单选题】下列关于对偶问题性质说法错误的是() A. 若原问题有可行解且目标函数值无界,则其对偶问题无可行解; B. 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界; C. 若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等; D. 线性规划问题的最优解中,如果原问题某约束条件对应对偶问题中的对偶变量值为零,则改约束条件取严格等式