证明:若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群有且只有一个,则此子群必为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
举一反三
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 证明: 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个 Sylow 子群都是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是它 的 Sylow 子群的直积.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群且其不同的子群有不同的阶,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个[tex=1.143x1.0]cLn0Gr6CnaTTCPqvS7e1NQ==[/tex]阶有限交换群,其中[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是一个奇数. 证明:[tex=0.786x1.0]JUr53aL1O6s9D+V6Y3g72w==[/tex]有且只有一个2阶子群.