已知随机变量 [tex=1.857x1.214]drqhrkQv+rX/M+8NJCSetQ==[/tex] 的概率函数如下,且 [tex=5.429x1.357]rvfOj4xieIoxQ0WsryECHQ==[/tex]。(1) 试求 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布律 (2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立? 为什么?[img=339x94]1775ca9b626ad3d.png[/img][img=251x89]1775ca9caf16455.png[/img]
举一反三
- 设二维随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的分布律为[img=213x108]1788c79a85ec2ac.png[/img]试求 : [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立, 为什么?
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的联合概率分布为[img=840x92]178f2e157cdbead.png[/img]试求:(1)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布;(2) [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex]的概率分布;(3) [tex=6.857x2.429]RqGV9tRUT6gh1TsLo9YXgRs6mochCT0I/f5RwmC1X0k=[/tex]的数学期望.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7A6odkNMe6sUD37iiMdl+fA=[/tex] 上服从均匀分布,(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]; (2) 问 [tex=1.857x1.214]drqhrkQv+rX/M+8NJCSetQ==[/tex] 是否独立?为什么?
- 随机变量[tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex]的联合分布为:[img=632x199]1790818229f1f32.jpg[/img]写出关于[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]及关于[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的边缘密度函数