若[tex=0.929x1.0]TCJ8vORtSoh7E6xiLKJBSQ==[/tex],[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]均为[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶方阵,命题:若[tex=0.929x1.0]TCJ8vORtSoh7E6xiLKJBSQ==[/tex],[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]都可逆,则[tex=2.571x1.143]r5Haq7W1lVGBc4dFEM2Zk1W3v8ag3hQ/jxq8jI47ovMRWPbY5eGp58IqJCI62D0L[/tex]可逆。是否成立?若成立,给出证明;若不成立,举例说明。
举一反三
- 若[tex=0.929x1.0]TCJ8vORtSoh7E6xiLKJBSQ==[/tex],[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]均为[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶方阵,命题:若[tex=1.714x1.0]3ldpMXDkYp0i0mwWQ8y1rms184hIFaybnN8iR7KQfvU=[/tex]可逆,则[tex=0.929x1.0]TCJ8vORtSoh7E6xiLKJBSQ==[/tex],[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]都可逆。是否成立?若成立,给出证明;若不成立,举例说明。
- 证明:若[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex],[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]是[tex=0.643x0.786]FU7w6l1IEII0B13k5eE1RA==[/tex]阶对称矩阵,则[tex=2.571x1.143]r5Haq7W1lVGBc4dFEM2Zk1W3v8ag3hQ/jxq8jI47ovMRWPbY5eGp58IqJCI62D0L[/tex],[tex=1.5x1.0]NVfNylUAgHSwVzBVNunL046ZUCkwj6s9DX3M9xDTDlk=[/tex]仍是对称矩阵([tex=0.571x1.286]B2ovqsb3k1n+9dueLzQ98w==[/tex]为常数)。
- 设[tex=0.929x1.0]juDDUvudizpzWJS+QmxwoSFECM052ukoeNblaDGZoVU=[/tex]是4阶可逆方阵,将[tex=0.929x1.0]juDDUvudizpzWJS+QmxwoSFECM052ukoeNblaDGZoVU=[/tex]的第二行和第三行对换后得到的矩阵记为[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex],证明[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]可逆。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]