• 2022-10-24
    对数函数的极限lim(x→0)[ln(1+x)-ln(1-x)]/x
  • ln(1+x)-ln(1-x)=ln[(1+x)/(1-x)]=ln[1+2x/(1-x)]x→0,等价无穷小代换ln[1+2x/(1-x)]~2x/(1-x)lim(x→0)[ln(1+x)-ln(1-x)]/x=lim(x→0)2x/(1-x)x=2

    内容

    • 0

      \( \lim \limits_{x \to {0^ + }} {\left( {\cot x} \right)^ { { 1 \over {\ln x}}}} \)=_____ ______

    • 1

      函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$

    • 2

      设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$

    • 3

      \( \lim \limits_{x \to {0^ + }} { { \ln \sin 3x} \over {\ln \sin x}} = 3 \)。

    • 4

      求函数$y=x\ln x-x$的微分 A: $(\frac{1}{x}-1)dx$ B: $(\ln x-1)dx$ C: $\ln x$ D: $\ln x dx$