已知x>0,y>0,x+y=1,n∈N*,求证:x2n+y2n≥122n-1.
举一反三
- 证明,若n>=1及x>=0,y>=0,证明不等式(x^n+y^n)>=(x+y)^n
- 设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1).
- 设随机变量X和Y相互独立且X~N(0,1),Y~N(1,1),则( ). A: P{X + Y £ 0} = 1/2 B: P{X + Y £ 1} = 1/2 C: P{X - Y £ 0} = 1/2 D: P{X - Y £ 1} = 1/2
- 若X, Y独立同分布于标准正态分布,则下列说法错误的是 A: max(X, Y)~N(0, 2) B: X+Y~N(0,0,1,1,0) C: (X, Y)~N(0, 2) D: (X, Y)~N(0,0,1,1,0)
- Consider the following sequence: x(n)={3,-6,5,-1,0,7,8}, -1≤n≤5.suppose the sequence y(n)=x(-n-2),then y(0)=______ , y(-2)=______ , y(-4)=______ , y(-6)=______ , y(2)=______ .