设E(X) =E(Y)= 1/3 , E(XY)= 0, D(X) =D(Y)=2/9 , , 则ρXY =____
-1/2;-0.5
举一反三
- 设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
- 设随机变量X,Y有E(X)= E(Y)=0, E(XY)= -1/8, D(X)= D(Y)=3/4, 则ρXY =____(a/b)
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 设E(X) =E(Y)= 1/3 , E(XY)= 0,则Cov(X,Y)=____(a/b)
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
内容
- 0
设X与Y是随机变量,若E(X)=1,E(Y)=2,cov(X,Y)=1,则E(XY)=()。 A: 0 B: 1 C: 2 D: 3
- 1
设随机变量X,Y有E(X)=3/4, E(Y)=1/2, E(XY)=1/2, 则Cov(X,Y)= ____(a/b)
- 2
设随机变量X与Y相互独立,E(X)=3,E(Y)=2,则E(XY)=( )。 A: 5 B: 1 C: 6 D: 0
- 3
设随机变量X,Y有E(X)= E(Y)=0, E(XY)= -1/8, 则Cov(X,Y)=____(a/b)
- 4
设随机变量X,Y有E(X)=2/3,E(Y)=6, E(XY)=4 ,则Cov(X,Y) =____