• 2022-06-05
    设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。
    A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\)
    B: \({e^{xy}}({x^2}y + {x^3} + 2y)\)
    C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\)
    D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
  • A

    内容

    • 0

      4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    • 1

      设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)

    • 2

      下列选项中属于二元函数的是( ). A: \( y = \tan x \) B: \( y = {x^3} \) C: \( z = 2{x^2} + xy - 4{y^2} \) D: \( u = {e^v} \)

    • 3

      下列微分方程是线性微分方程的是()。 A: x(y’)<sup>2</sup>+y=e<sup>x</sup> B: xy"+xy’+y=cosx C: y<sup>3</sup>y"+y’+2y=0 D: y"+2y"+y<sup>2</sup>=0

    • 4

      设随机变量X,Y有E(X)=3/4, E(Y)=1/2, E(XY)=1/2, 则Cov(X,Y)= ____(a/b)