用单一运放设计一个增益为 [tex=7.357x1.214]4wGEVhTrk6NulE1kdfgfVgd+MUPUEc3d/X0vVw6IoWgg4oFk4LJw/NED6XqQSu2h[/tex] 的三阶巴特沃斯高 通滤波器。
举一反三
- 用单一运放设计一个增益为 -1, [tex=5.214x1.214]scHrgdeUfrnjLSq9WgJJ+GhTa54SwFfOXsSnbGT1JSs=[/tex] 的三阶巴特沃斯高通滤波器。
- 函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
- 函数$f(x) =x^{1/2}-x^{2/3}$的单调递减区间为 A: $[0,\frac{3^6}{4^6}]$ B: $[\frac{3^6}{4^6},\infty]$ C: $\mathbb{R}$ D: $\mathbb{R}^+$
- 函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]