• 2022-11-03
    设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求 [tex=1.071x1.214]TCwrp+pzhL+w+xTDZlepHg==[/tex] 的行列式.
  • 解 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值为 [tex=5.786x1.214]oNH2de8I1XfFs1vBi4Ose/m3xb4ZXIOWJL213dkS9oZGcEJxwIaoBVvUWo01TUpn[/tex] , 则 [tex=1.071x1.214]TCwrp+pzhL+w+xTDZlepHg==[/tex] 的特征值为 [tex=6.429x1.429]VF8UWWwSAzJfSh0IuGiVO5IsDB1Gg6ltBHSi8TM+tVmTd2lcYsOvfKwj4Q/q2BM1jKuLLdue0imqqmwHpm7PWQ==[/tex], 因此[tex=16.0x1.571]V1lIbkggcjzpt3UeWOzNFKL9odtzXoSiDCA9oTeroNPZjvK1vlkhpAuwtUaBeII/o4SacCkWkqQBXuPrV8ZOgXZaa8bDU6Of+dxki5BkyilnPNM0oyqSiVGCNlcxXvkix9M9G5YrbUQe0K3SfCs+hPE6LOSWun41nUlrFqLevu+lvWA8exWhNxHCNABjnhgzq0WmCNDkFFkQLyIVteQkxQ==[/tex]

    举一反三

    内容

    • 0

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且有特征值 1, 又 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 只有一个线性无关的特征向量. 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型.

    • 1

      若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].

    • 2

      如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 证明: [tex=8.071x1.429]8ikqL6fmrpT8QKUqw27z/OhDOIjPrNcC14KkXO/+uZLLUm6LndzZjjQ+hlL5r8Bs[/tex]

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶不可逆矩阵,若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的伴随矩阵 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 不是零矩阵,求方程 [tex=2.643x1.0]Luk4dywqmDJgAqza1pE8oQ==[/tex] 的通解.