举一反三
- 【简答题】若函数 f ( x ) = ax 2 + 2 x - ln x 在 x = 1 处取得极值. (1) 求 a 的值; (2) 求函数 f ( x ) 的单调区间及极值.
- 设函数f(x)=lnx-x+1.(1)求f(x)的单调区间与极值;(2)当b>a>0时,求证:ln(a+b)-ln(2a)
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 设函数f(x)=ax2+bx+c(c>0),且f(1)=-a/2求证:函数f(x)有两个零点设x1,x2是函数f(x)的两个零点,求|x
内容
- 0
下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
- 1
设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$
- 2
1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 3
设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)
- 4
设函数f(x)={x2,x≤1;ax+b,x>1},为使函数f(x)在x=1处连续且可导,则()。 A: a=1,b=0 B: a=0,b=1 C: a=2,b=-1 D: a=-1,b=2