写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.将3个球任意地放人4个盒子中去,令[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]表示“恰有3个盒子中各有1球”,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]表示“至少有2个球放入同1个盒子中”.
举一反三
- 将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]——任意 1 个盒子中有 3 个球.
- 将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]——任意 3 个盒子中各有 1 个球.
- 将 3 个球随机地投入 4 个盒子中,求事件的概率:[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]——任意 1 个盒子中有 2 个球,其它任意 1 个盒子中有 1 个球.
- 有 3 只球,4 个盒子,盒子的编号为 1,2,3,4 . 将球逐个独立地,随机地放入 4 个盒子中去. 以 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 表示其中至少有一只球的盒子的最小号码(例如 [tex=2.714x1.286]prv429ErCgl+2P/UwQ1FYA==[/tex] 表示第 1 号,第 2 号盒子是空的,第 3 个盒子至少有一只球),试求 [tex=2.429x1.286]DkA/r0o0F+rTk+LIycHv1g==[/tex] .
- 将 4 个球随机地放入 3 个盒子中去,若[tex=1.214x1.214]BrCDDY9cc4CCEczFkSUkLw==[/tex]分别表示放入第一、第二个盒子中的球的个数,求二维随机变量[tex=2.214x1.357]vTBQ9a0EOhj2pxYe2tOoFg==[/tex]的分布律.