在线性空间M2(R)中定义变换.(1)试证σ是线性变换.(2)写出M2(R)的一组基,并求σ在这组基下的矩阵.在线性空间M2(R)中定义变换.对于任意(x1,x2,x3)∈R^3,σ((x1,x2,x3))=(2x1+x2+x3,x1+2x2+x3,x1+x2+2x3)(1)试证σ是线性变换.(2)写出M2(R)的一组基,并求σ在这组基下的矩阵.
举一反三
- F(x1,x2,x3)= x 1 2 +2x 2 2 +5x 3 2 +2x 1 x 2 +2x 1 x 3 +6x 2 x 3 的标准形为()
- 以下变换$\cal{A}$是线性变换的有( )。 A: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(x_{1},x_{3},x_{2}+1)$ B: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(\mid x_{1}\mid ,x_{3},x_{2})$ C: $R[x]$上变换:$\cal{A}(f(x))=f(x+3)$ D: $R[x]$上变换:$\cal{A}(f(x))=f(x+1)-f(x)$
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是:
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是:
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])