证明下列等式:[tex=5.357x1.286]kLSeWsJBebAVjrHuXDaYDA==[/tex][tex=6.5x1.286]WIFM6wCRnz+2Cqiu+jehGw==[/tex].
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是任意事件,证明下列关系式:[tex=5.357x1.286]kLSeWsJBebAVjrHuXDaYDA==[/tex][tex=6.5x1.286]WIFM6wCRnz+2Cqiu+jehGw==[/tex].
- 证明下列等式:[tex=3.5x1.286]GgwkZOAkEcPuZCIFLinm9w==[/tex][tex=9.071x1.286]7p7o3eLdJOeoyFe4scHhqK59HTgZEYQQex86feogXV4=[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]为三个事件,指出下列等式成立的条件:[tex=6.5x1.286]JGzuFlQZwhlHy5lWrTjUGB0kf/vi9tBq4MLmCIU22hk=[/tex]。
- 设三阶矩阵[tex=2.0x1.286]cdFQTIcX/k6W15SnnVIOSQ==[/tex]满足[tex=6.5x1.286]fKMuxXvMmkhZ6KBFJApU0RzCv0uzUPjL4nc3K7Aig7k=[/tex],证明:[tex=3.214x1.286]CxRh2MuWfyX9bh9PvBg47Q==[/tex]可逆 .
- 设[tex=5.071x1.357]F6bRKyKPeZnkNsQJoKlQizzpoZOSurz3+HssUZOqEts=[/tex] , 证明:当[tex=2.429x1.071]YgZmj08JcO0GKgysWXYdig==[/tex],[tex=2.357x1.214]MfkSLvti6S2dck4Of624jw==[/tex],下列等式成立:(1)[tex=9.429x1.357]q+QqodKY//3Vrhtdj6cKjJWVt2LrCtAdBPintl+A3jU=[/tex](2)[tex=10.0x2.786]d45JNlq8dYhM6/fkMs65zHSsFOoNkIH6N1WU9dISpfvOTy0YYjhDt1QTgZyn9+s0[/tex]