举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 设由[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中取出 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个可测子集[tex=6.286x1.214]RwHNhKnsJE7/U9e6rjTMWNwjbalxGWzDRU455ijC9QA=[/tex], 假定[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中任一点至少属于这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个集中 的 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]个,试证必有一集,它的测度大于或等于[tex=1.857x1.357]fQeXgfKDPec+KYD4YDQ2SQ==[/tex]
- 设 [tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex] 是 [tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex] 中的不可测集, 试证明存在 [tex=0.5x1.286]URO1dJ1+mlA+ct1xhInvUdmF3M0RCUt7FyFmkNxsEyQ=[/tex]: [tex=4.0x1.286]IodtM1izXJK8tZDjSEoDhODKImhqBvKxRiLJpOEzlmQ=[/tex], 使得对于 [tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex] 中的任一满足 [tex=4.143x1.286]yGb53JJkNobym20J/WVnYDfOAtayQo5TlI8W28jhupM=[/tex] 的可测集 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex], [tex=3.286x1.357]UvT0g+M2uyblVKC2qbBLwmK3IOR+fxqDcgDqFjmNP0g=[/tex] 是不可测集.
- [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个自由度体系有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个共振区。
内容
- 0
已知[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]位数的各位数字只能取集合[tex=7.286x1.286]vkY6pT7AX4Kqtvmk1/B9EgJAV/rDmdVLOQUaNqk/S1g=[/tex]中的数字,设含有数字5且在5前面没有数字3的[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]位数的个数为[tex=1.929x1.286]JHQoVSyD3e6ZQ1BklkDnNg==[/tex],求[tex=1.929x1.286]JHQoVSyD3e6ZQ1BklkDnNg==[/tex]。
- 1
已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。
- 2
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,[tex=4.643x1.286]+vYHnuy9quN2DM2YVRblMCQ02EPHwmmjJRAfRMp52BQ=[/tex]是矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个特征值 . [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶单位阵 . 计算行列式:[tex=3.714x1.286]RiDrKs1JWRlyLQRAMb69cg==[/tex] .
- 3
设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]为数域[tex=0.929x1.286]nrJzN9qRndstwtgYfof7gw==[/tex]上的[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维向量空间。证明:对任何大于[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]的自然数[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex],一定存在由[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]个向量组成的向量组,使其中任何[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个向量都线性无关。
- 4
[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与某个对角矩阵相似的充分必要条件是[input=type:blank,size:6][/input] . 未知类型:{'options': ['矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩等于[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个不同的特征值', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是对称矩阵', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个线性无关的特征向量'], 'type': 102}