• 2022-06-15
    设 [tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex] 是 [tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex] 中的不可测集, 试证明存在 [tex=0.5x1.286]URO1dJ1+mlA+ct1xhInvUdmF3M0RCUt7FyFmkNxsEyQ=[/tex]: [tex=4.0x1.286]IodtM1izXJK8tZDjSEoDhODKImhqBvKxRiLJpOEzlmQ=[/tex], 使得对于 [tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex] 中的任一满足 [tex=4.143x1.286]yGb53JJkNobym20J/WVnYDfOAtayQo5TlI8W28jhupM=[/tex] 的可测集 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex], [tex=3.286x1.357]UvT0g+M2uyblVKC2qbBLwmK3IOR+fxqDcgDqFjmNP0g=[/tex] 是不可测集.
  • 反证: 假设 [tex=1.0x1.286]joguGSInidzw2xc+WzmvAXabT+BheP+jZeHfgi1TQLU=[/tex]: [tex=4.0x1.286]IodtM1izXJK8tZDjSEoDhODKImhqBvKxRiLJpOEzlmQ=[/tex], [tex=0.571x1.286]qM/qSoDSmblACxrriibiAw==[/tex] 可测集 [tex=4.0x1.286]f+SDXvpUNhnllES7HGPIOp5NLDhyX8ZLSXxIo0TSOho=[/tex], [tex=4.143x1.286]yGb53JJkNobym20J/WVnYDfOAtayQo5TlI8W28jhupM=[/tex],  [tex=1.071x0.929]hHP1EJN3fqZ8NcRWLOYttA==[/tex]. [tex=3.286x1.357]UvT0g+M2uyblVKC2qbBLwmK3IOR+fxqDcgDqFjmNP0g=[/tex] 是可测集, 取 [tex=4.714x2.0]cMoevGX9NgbwIKy9ZNVf8D4mLec6fEn/17v80pwr5S6qtoRVPKk91oroDw2tDju/[/tex], [tex=0.571x1.286]qM/qSoDSmblACxrriibiAw==[/tex] 可测集 [tex=4.5x1.286]jY+0MQsNA77707lbFLOHKrGZJX+xL8lVCFB6xmULSBg=[/tex], [tex=1.071x0.929]hHP1EJN3fqZ8NcRWLOYttA==[/tex]. [tex=5.286x1.286]/6D+ZcJQ9mDROFn30roF3vXo/f7t/iaAS9lEgbJySI03jsxj/gmQrm48lTKs5wH6[/tex], [tex=3.714x1.357]yYKRsn2ASzGbUJXgWBYUDGWC/xxUuYoQ4ke8rAsuQXQ=[/tex] 为可测集, [tex=4.857x1.286]YPiXln35VbFZwRw1qebPNC/mxvz5Wi8NCIeJXzYWeYc=[/tex]; 令 [tex=4.929x2.714]Ig0RXhfmuAX95RhEHQs/FTQZNIHXPn7XFrr39PDE4Vt/B5x/3t0xhSBDqgsV6Tt/[/tex],  则 [tex=4.0x1.286]6PCcDPzg/HFGpxCXUpHjJGQIYhYKTL6Y3zS8bxrTyyM=[/tex] 为可测集, 且 [tex=3.5x2.0]AuDC68M/qiAiBflTt1LHeXpNvaMqQpVgJZlpVtNVdcY=[/tex][tex=4.0x1.286]/6D+ZcJQ9mDROFn30roF3gGc7jv1Ips3izDRkpZo0O8=[/tex][tex=4.143x1.286]oSbxBlnleKlrGZBbImVKlvVGBU2zUTuhQhg/+1YvfT8=[/tex],  令 [tex=3.071x1.286]p1DG6mX8msE3sGnMEAQzJ1M93Xzp/+HYTloojm6Fzfg=[/tex], 得 [tex=4.143x1.286]A8UylDBYt4xJogyBMOx1tg==[/tex], [tex=5.857x1.286]YUo2FCDh4fUtx2rAMzGcKp4gP1/oKzGOwhLwPC6eqjw=[/tex][tex=8.929x1.286]ZcIZI6jn27jSw9yWRfAjdEKPYC5Xr6qAlPWZTKVmS0U=[/tex], [tex=9.286x1.357]WS1AeCRmgJZ0lUQry4mE0WUg5NWg6z+XhLmtSOCtmLTi0XYS6oZOgvu1K4+sUiiH[/tex][tex=6.643x1.286]YUo2FCDh4fUtx2rAMzGcKpUSpGHJqLsDiVbD25cmhxM=[/tex],[br][/br] 所以 [tex=6.214x1.357]n1vtmFtALLbyRHLvG1kmcbIp8h4RC2MpgrPYEugkgOLwe/HvBafX5EDWP51+Gez7[/tex] 为零测集, 又因为 [tex=4.286x1.357]QkCTpTAJiaP4ZoKwOlNQs6BFzqyKDGFOlNtJfncj1XE=[/tex][tex=7.857x2.929]pAUOFrbaXa7NqoxjntY7+UlOXZxa0fZyn7vVE2t1QyFX/zpH6sgc1R9VsDVqV+42+qAQDbfUSEj3JizKz9XxPQ==[/tex][tex=6.357x2.714]jPWH0brP0+PqG3vNRiErz1krFP7FSdkAx79T97+DTcTgqAD+Fl+a0oscuc+fxwr64N+5RLGgsFmJna1b6wMkiA==[/tex] 为可测集, 所以 [tex=7.643x1.357]IsKuGVD3xXhRGfxDq+oNZvL/BG4AZDjLCEt0vRvKATA=[/tex][tex=4.714x1.357]4jDTGr3oAImwbm5kWA45j1jFHCtmPMex/6xwhe+FUO4=[/tex][tex=5.357x1.286]8oAkhqqf1FgINl0UQZyhtPg7gnE/3Qr5qJmwp11PuJk=[/tex][tex=5.214x1.357]e/VV2EbGpNS2CbjiJM55UTYXXVFPOKiwGkhs/J6m7bY=[/tex][tex=7.0x1.357]Si8gZDm3LGH9Q8Al64mcSfFmKeV/8bi8jElupWvfpEQMibfUv+2XiSVhbxS2DGDc[/tex] 为可测集, 与已知 [tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex] 为不可测集矛盾, 故假设不成立, 原命题得证.

    举一反三

    内容

    • 0

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中的不可测集,证明存在[tex=4.143x1.071]foEe0bX/HiE5m+5XK4O1oQ==[/tex],使得对[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中任一满足[tex=3.429x1.143]3kInYXL7KglKF9opo6+E208LHQuHr81UP2RJmXlIZps=[/tex]的可测集[tex=3.786x1.214]1C8YWn1GyFaWZo6LcXsKvA==[/tex]均是不可测集。(提示:用反证法,设[tex=4.0x2.357]Ya0P7AeSIwzljpdSih4Ls2nlNcBmDaCgFicJZSszDfs=[/tex],存在可测集[tex=4.5x1.357]sSgG4FGVFXyPdkfA4yXe2sjMn3B8lX7bp3uvQG8TiOo=[/tex],使[tex=5.714x2.357]O8ndCxR7Z2RPuyH2D96wFJcTyQ+TtihbzQhEiyyp/ws=[/tex],而[tex=3.071x1.214]dhCrjd06nS60zmWa17VLcw==[/tex]可测,利用[tex=21.143x3.357]heZMQ3r0U860u5hsqLoCG6wX7RUqzTZHFi1QAtEA7XFbmIW0PHaNKdvVnO/dqmkMqLHnWJiPMapduqdyNAdQvhwvZi0/JEqI6HPrT/5tx8dKU3EwA2BPpsJoOlX5H+jZ2yhbCwUeRHKfimY+XdyP8HDHBP2I409gFzikJoxFkob7c465dt0fLHUJ1CHgHbdW[/tex]推出[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可测)

    • 1

      证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].

    • 2

      设 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 是 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 中的不可测集,证明:存在[tex=5.071x1.214]x7RJXeG5RWlGo3aCH+iNwBEsg7jxayJ2LH5ClUh1LLc=[/tex], 使得对 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 中任一满足 [tex=4.214x1.357]MzuaJa9dpBgNKe6rkz5BRCUs8/gIHKZHD+w2OpkO4g8=[/tex] 的可测集 [tex=3.714x1.214]gWlcE/WOfI8ydfnJJSiIjw==[/tex] 均是不可测的.

    • 3

      设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.

    • 4

      设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。