Gibbs--Duhem 方程正确的形式是( )。
A: X1dlnγ1+ X2dlnγ2= 0
B: X1dlnγ1- X2dlnγ2= 0
C: X1dlnγ1/dX1 - X2dlnγ2/dX1 = 0
D: X1dlnγ1/dX1 + X2dlnγ2/dX2 = 0
A: X1dlnγ1+ X2dlnγ2= 0
B: X1dlnγ1- X2dlnγ2= 0
C: X1dlnγ1/dX1 - X2dlnγ2/dX1 = 0
D: X1dlnγ1/dX1 + X2dlnγ2/dX2 = 0
举一反三
- 【单选题】二元 溶液 , T, P 一定时 ,Gibbs—Duhem 方程的正确形式是 (). A. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 2 = 0 B. X 1 dlnγ 1 /dX 1 + X 2 dlnγ 2 /dX 1 = 0 C. X 1 dlnγ 1 /dX 2 + X 2 dlnγ 2 /dX 1 = 0 D. X 1 dlnγ 1 /dX 1 – X 2 dlnγ 2 /dX 1 = 0
- Gibbs--Duhem 方程正确的形式是( )。 A: X1dlnγ1+ X2dlnγ2= 0 B: X1dlnγ1- X2dlnγ2= 0 C: X1dlnγ1/dX1 - X2dlnγ2/dX1 = 0 D: X1dlnγ1/dX1 + X2dlnγ2/dX2 = 0
- \( d(\arcsin x) \)=( ). A: \( {1 \over {\sqrt {1 - {x^2}} }}dx \) B: \( - {1 \over {\sqrt {1 - {x^2}} }}dx \) C: 0 D: 1
- 由\( y = {x^2} - 1,\;y = 0 \)围成的平面图形面积可表示为( )。 A: \( \int_{ - 1}^1 {\left( { - {x^2} + 1} \right)} dx \) B: \( \int_{ - 1}^1 {\left( { { x^2} - 1} \right)} dx \) C: \( \int_0^1 {\left( { - {x^2} + 1} \right)} dx \) D: \( \int_0^1 {\left( { { x^2} - 1} \right)} dx \)
- 设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx