举一反三
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。
- 设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].
- 已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。
内容
- 0
对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
- 1
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 2
若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 3
求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]
- 4
求柱面 [tex=3.929x1.429]/zgqabtImeIaKGhfpDlfIA==[/tex] 与三张平面 x =0, y = x , z =0 所围的在第一卦限的立体的体积。