证明当 [tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex] 很小时,下列近似式成立: (即当 [tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex] 时误差是 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的高阶无穷小 )[tex=3.929x0.929]8l5PILRLCy998s7R+K49znJGUB8TTu5/tr+AIGSWv4g=[/tex].
举一反三
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=4.143x0.929]8l5PILRLCy998s7R+K49znJGUB8TTu5/tr+AIGSWv4g=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=4.143x1.143]tVAA1SQqO770BQw37NjdZ0PJ5BVPda3IMkqkxn4H7yw=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=5.571x1.357]U1wmHxOJGhB2b59DNNvZpYOhOyX6mXpIXspazozeO7Q=[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)
- 证明当 [tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex] 很小时,下列近似式成立: (即当 [tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex] 时误差是 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的高阶无穷小 )[tex=4.143x1.143]M5cWU45u+TMcr8Gf1E54zp8rtKViy8QUIcNRJIMrK1A=[/tex].
- 证明当[tex=1.143x1.357]M7eFZhSCOUN37Yx3DlAzjQ==[/tex]很小时,近似式[tex=6.357x2.143]G2QkHPbcf/R+bRTX0YnX96RpcK/VYgulBPNfn0ZfcSHEe8dnJiVxhLXQOoH5QvDl[/tex]成立:(即当[tex=2.071x1.0]Fi2OiSq+zhaJTNdXB7v8ZiiLNxDfOHdeaRgfouwng8U=[/tex]时误差是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小)