作下图所示刚架的弯矩图。设刚架各杆的EI皆相等。[p=align:center][img=235x220]17b065d26074be1.png[/img]
图 (c)所示的是二次超静定刚架,解除支座 A ,代之以 反力[tex=1.214x1.214]RGL66c5lswY1C+6eBKmreA==[/tex], [tex=1.214x1.214]54dttk5LXQn2bc090pvTrA==[/tex],正定基如题 图 [tex=1.571x1.357]abUcZkQg2qmqs1YfGjEGrlWxoef4SVtCaJV/7Gt+LPM=[/tex]所示。正则方程为[p=align:center][tex=13.714x2.786]GE56u9QCDTqcLxZ66HADyvQezYivTdAxGd+YPh289NNFJOkN81GBKVlS8/z6haEMjlmIrWdJb4DdGHPVgl8fku9bCd7eexsi81K7LPjWyB7drqoeLoMX6fl7nLoSalgY6T+9s0/2zVnUFmBXATjkYG9kw2yj1Vd16RpmVdL0mSSm0pARrxMtJVPbpnDtBtxCpfNUbDzBIJGUaJmR/8lBIg==[/tex]利用图乘法求[tex=1.0x1.286]fZzLsy+cjtGcVX0nRvmjMg==[/tex] [tex=1.571x1.214]Ir9iMgdW3hpWNOBT4g68gw==[/tex](图 [tex=1.571x1.357]OphR10yA/omZUfvHhtH0l9CWuZ++OKDFBlY+Vh8VomQ=[/tex]) 、[tex=1.571x1.357]kKR6vHbq86PCvqSheBLm3lX+SSK/6+uZv9UCS5OPmJY=[/tex],[tex=1.571x1.357]a0f8zbsA3zAG4lPYqQhHQ2mnKzDGPvhYx872L7SQN6A=[/tex])[tex=6.286x2.5]/0CqHmBbTrB42rSYxWFD0PYTkDvCD9sY2fXopioDAZ6iHS/nvTXeLBvSgwpza6LAfL7P8VJ2TRtSPulK8tCS0Q==[/tex][tex=23.571x2.786]MQCrta+if/82r87YQV4KqIUUraISrbeWFEcdf1k+or9TIIreq40ZTAQ56bROf9ZHHtrLedJ+Ojce8pAy2NbhQr8j9p9k9o+5+1bacqsxcQIllueg7s72E88gNA9isczjcJbPHP+yl6mSqsebkfe82JzeJh6Vb0/vl6nEzmj2Q0icQOUnf+jt1Fgnr49pJFUSFZKSwGlvx0OX2NNaym/bxA==[/tex] (2)[p=align:center][tex=25.143x11.786]UD5Uh4Sf0JOreHxD3gt15s6NiF2YShojjMG0eF1tpx9FcSmNcgUUE2tEMEyeysTUa80yjw4+5ore2qFog6nMS/TiwybP00hXj1rTNiCG3FnWt6RT19PSvKpjayZsmV6DRdhBGXRZTrIOTtqDruHq4EhBIAcpBYI9e764ubIpr+7hvZcZk0j5haOCo9rAo5mkwwgXadfVg5xVYiRAyoLbGwr8GHjpyXlwuEWbn84jBemrgXLDiry3qJ4TQaDX79PfsCORiHBCkhnLHfnjxbihQ9kop5pMzWd6sZZLKFccumYRB60gDPER07rYTfIhTO6hWa/lP9gAgBhbNfTQCn+T8D6H/WVnzGleT+1XdqT0FKQXEE7fF0HgaFi5ZuIfsvdl6lLxUnIeyA8nPsmL7nxUf74AzJC5hpwCwuIam/B6slUndmnn3t1mUQf7U9mvVZod75ZzXla6lNX2uf1hKq3wpS3LHX2ai3hKuEVJOjesZv3yW32y3pEM+Y2m0UJo57ddXc6/KvPBWHjqMehz/y7sVodVwwJZZH4Evr6oDNT1N+CvIxikByMWdyrLNdHzyNIvAGPBxHoPTah/A3EX9iXIucLHvpC2A9f8W2XTfNmb3g/XEpPTkSvPD6r1MPiRMLnT6rx2RjLHTkDTIQoLUDEVGZhMZ0Iqb102ffqKjv6Jh8KyQZam2Al6GGqi4oU1bxOAtS8syR7gme6pMz9H2GqRGdPWrKyrMThi8F47E1F/VUtNcKSEi/p6S5EMDN6xQ3xuAxJemO39qTrbUzr9JU029AgOqzRC/ThCnI4pdDn9zG8CcADoaJgxGho7Ii6hRZ4rclQJpsyq/NQvD+tuZN7b9ZAph8PU2zG9r5XCd0V7FFd94YndFY/SVQhKOaiVaRVe[/tex]将 (2) ~(12) 式代入正则方程(1)式得[p=align:center][tex=11.786x2.357]NDFpLOgNRfDDayk9XMGlP6kMt18z713CJK3hhxQWRmdOB06oIyjs5iJpDgev15FYlMh1M3n3xODKz01e8CbS8A==[/tex][p=align:center][tex=11.786x2.357]7OyC8N39wguAUhP+sww77N+kbkr4cKI9dw43ObJDSaIVvhnVSidtt51juFp5wHplN2gE6YV8U404RZjkr5yHWg==[/tex]从上二式解得[p=align:center][tex=13.5x1.214]KWpqqJ6wsvIfNySz9bR6QTmtSoqQn7d/CdDMJyrLudmipLHc5qWh7BQGBfHjIhbP[/tex]求出 [tex=1.214x1.214]RGL66c5lswY1C+6eBKmreA==[/tex], [tex=1.214x1.214]54dttk5LXQn2bc090pvTrA==[/tex], 后作弯矩图如 图 [tex=1.571x1.357]vlOuRp1EPkulzy/rKXql/yUJjAyUdMi9xwnaukdCZ2Q=[/tex] 所示。[img=766x558]17b065f8257bd3e.png[/img]
举一反三
- 作下图所示各梁的剪力图和弯矩图。设EI=常数。[p=align:center][img=316x151]17b0b0a99d7cd52.png[/img]
- 图示两刚架的EI均为常数,并分别为EI=1和EI=10,这两个刚架的内力关系为( )。[img=1534x565]180335017417e31.jpg[/img] A: M图相同 B: M图不同 C: 图a所示刚架各截面弯矩大于图b所示刚架各相应截面弯矩 D: 图a所示刚架各截面弯矩小于图b所示刚架各相应截面弯矩
- 作下图所示的钢架弯矩图。[p=align:center][img=268x241]17a7ba43d937843.png[/img]
- 求图 所示超静定刚架[p=align:center][img=316x226]17b0aecbe6ac5c3.png[/img]
- 下图(a)、(b)所示两刚架的EI均为常数,并分别为EI=1和EI=10,这两刚架的内力关系为______。 A: M图相同 B: M图不同 C: 图(a)刚架各截面弯矩大于图(b)刚架各相应截面弯矩 D: 图(a)刚架各截面弯矩小于图(b)刚架各相应截面弯矩
内容
- 0
作下图所示梁的剪力图和弯矩图。[p=align:center][img=400x141]17a7b9b9287c4fb.png[/img]
- 1
图示两刚架的EI 均为常数,并分别为EI = 1 和EI = 10,这两刚架的内力 关系为:( )[img=311x160]17d60691f8fb62d.png[/img] A: M图不同 B: 图a刚架各截面弯矩小于图b刚架各相应截面弯矩 C: 图a刚架各截面弯矩大于图b刚架各相应截面弯矩 D: M图相同
- 2
作下图所示各梁的剪力图和弯矩图。求出最大剪力和最大弯矩。[p=align:center][img=346x133]17a7bd11e60fcc2.png[/img]
- 3
图示两刚架的EI均为常数,并分别为EI=1和EI=10,这两刚架的内力关系为()。 未知类型:{'options': ['M图相同;', '图a刚架各截面弯矩大于图b刚架各相应截面弯矩;', '图a刚架各截面弯矩小于图b刚架各相应截面弯矩。[img=591x320]17d60cfcd669492.png[/img]', 'M图不同;'], 'type': 102}
- 4
平面刚架如 图 所示。若刚架各部分材料 和截面相同,试求截面 A 的转角。[p=align:center][img=196x250]17b05c11027d441.png[/img]