• 2022-06-19
    作下图所示各梁的剪力图和弯矩图。设EI=常数。[p=align:center][img=316x151]17b0b0a99d7cd52.png[/img]
  •  如 图 (a)所示。 设想支座向左延申一个虚拟跨度l1,图b所示。选取静定基,如图所示c所示,列三弯矩方程为[p=align:center][tex=14.571x3.071]UD5Uh4Sf0JOreHxD3gt15pXf3ugtJ1dCpbBqv4z3TrD5Ja75yVMCF7OTeOahV7YEsONsEdKB8LT4WhnYPZfp3SI21qI93CCI33MmpcDDSqXTgqM/09xkhRlykOhhRq2rfgLUzuuTj2ivraiqFhpmbGh95f8nFYi5DG1wbAGoE5+1bL4osJMSTFeUmbld3SQJcJqeWoC430xmHSaBlBIOxkzgo+KbODPODmYEwg+WBgE=[/tex] n=1 吋 [tex=18.643x1.357]TAlCJSanHYCqY21pa5KRH2NvNpBu4lA1/km+2Yi0GtbxTwnRT1bS1usKemeuWwuH/SA4IQIUqeGPZQjQpu8w98TXecXIagt3YkRh+FlbZbI=[/tex][p=align:center][tex=20.357x1.357]5ptCocvn5hHF4d1r2i8UVw9zddSqw5MrxiXwnoqxzLvGE50oM545+UlYDRbcAKD7zMN8HOC42+k0sUry8hFKv2RN3v1OLs/YHlMBi7I35Qxmtt7jtpga/YsvWGFEhmBZEkWWyHAL5XX9btOjd9f/eJm4e1xdL/BNQeFldum1OXQ=[/tex]即 [tex=9.429x1.357]GxfZ7gzLU/IaU7Qb9rwJQRzSMkMVF4OV/S+08bfo0gY=[/tex]解得 [tex=10.643x2.429]nVI1qrlpBO0iXARBzFQ00bfP1oG426RW7K0PCbBxBQQord9jXY7z7KuEFaUKalSu[/tex]利用平衡条件按图a所示可求得支座反力[p=align:center][tex=14.643x2.429]aS6MnIvU5WZYDNfo1oCsy/5IBoHGrG6NUdH5v3xTjZwoP6oLjXpJfqZwnCbrsIHDg1M312ZKm+p+nRbLG6xBA9+Xju3EnUpTFpltBJ412s2je4z+EEETzCy/1T3IM3Kg[/tex]做剪力图和弯矩图如图c,d所示[p=align:center][img=823x796]17b0b0b67f7d26b.png[/img]

    内容

    • 0

      用积分法求下图所示梁得挠曲线方程及自由端得挠度和转角。设EI为常数。[p=align:center][img=346x133]17aa414556877e6.png[/img]

    • 1

      下图所示的简支梁,中间截面B上的内力为:[img=312x149]17de7efc7e33c01.jpg[/img] A: 弯矩为0,剪力为0 B: 弯矩为0,剪力不为0 C: 弯矩不为0,剪力为0 D: 弯矩不为0,剪力不为0

    • 2

      求下图所示纵横弯曲问题的最大挠度及弯矩。设杆件的抗弯刚度EI为已知。[p=align:center][img=334x129]17ac357dd9ede3f.png[/img]

    • 3

      如图[tex=1.786x1.143]67YZS7nX0GaOoxtmen5p1Q==[/tex]所示各梁,试利用弯矩、剪力和载荷集度间的关系作剪力图和弯矩图。[img=414x501]17cfad2bb912fd3.png[/img]

    • 4

      求图 2.16 所示各有源二端网络的戴维南等效电路。[p=align:center][img=217x186]17aad9455d95bb9.png[/img][p=align:center][img=229x200]17aad94a9813d86.png[/img]