设 f(x) 在 R上有定义,函数 f(x) 在点x0 左、右极限都存在且相等是函数 f(x) 在点x0处连续的( )
举一反三
- 【单选题】函数f(x)在点x=x0处连续且取得极大值,则f(x)在x=x0处必有()。 A. f’(x0)=0 B. f’’(x0)<0 C. f(x0)=0且f’(x0)<0 D. f’(x0)=0或不存在
- 函数f(x)在点x=x0处连续是函数│f(x)│在点x=x0处连续
- 下列结论错误的是( ). A: 如果函数f(x)在点x=x0处连续,则f(x)在点x=x0处可导. B: 如果函数f(x)在点x=x0处不连续,则f(x)在点x=x0处不可导 C: 如果函数f(x)在点x=x0处可导,则f(x)在点x=x0处连续 D: 如果函数f(x)在点x=x0处不可导,则f(x)在点x=x0处也可能连续
- 设函数f(x)在点x0连续,则函数f(x)在x0处(
- 如果函数f(x)在点x0处连续,则函数f(x)在该点处左连续且右连续