• 2021-04-14
    支持向量机可看作是一类简单、直观的最大间隔分类器的推广。
  • 内容

    • 0

      支持向量机是一种对线性分类器的最优设计方法论。

    • 1

      关于线性和非线性支持向量机的描述,以下哪种说法不对 A: 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机; B: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机; C: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机; D: 线性可分支持向量机利用间隔最大化求得最优分离超平面,这时的解不是唯一的

    • 2

      支持向量机的训练目的是为了获得线性分类器

    • 3

      SVM 原理描述不正确的是( )。 A: 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机 B: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机 C: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机 D: SVM 的基本模型是在特征空间中寻找间隔最小化的分离超平面的线性分类器

    • 4

      支持向量机可以看作是具有一层隐藏层的神经网络。支持向量机的理论基础是()