• 2022-06-04
    设∫f(x)dx=x2+C,则∫xf(1一x2)dr等于().
    A: A.
    B: (1一x2)2+C
    C: B.
    D: (1一x2)2+C
    E: C.2(1一x2)2+C
    F: D.一2(1一x2)2+C
  • B

    内容

    • 0

      计算(1)(x+3)(2x2一4x+1)(2)(3x3一2x+1)(2-x)(3)3(x一2)(x+1)一2(x一5)(x-3)(4)x(x2一4)一(x+3)(x2一3x+2)

    • 1

      满足方程f(x)+2f(x)dx=x2的解f(x)是:() A: -(1/2)e+x+1/2 B: (1/2)e+x-1/2 C: ce+x-1/2 D: ce+x+1/2

    • 2

      已知E(X)=一1,D(X)=3,则E[3(X2一2)]=_______.

    • 3

      若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)

    • 4

      求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是: