将多项式2x4一x3-6x2一x+2因式分解为(2x一1)q(x),则q(x)等于( ).
A: (x+2)(2x一1)2
B: (x一2)(x+1)2
C: (2x+1)(x2一2)
D: (2x—1)(x+2)2
E: (2x+1)2(x一2)
A: (x+2)(2x一1)2
B: (x一2)(x+1)2
C: (2x+1)(x2一2)
D: (2x—1)(x+2)2
E: (2x+1)2(x一2)
举一反三
- $(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
- F(x1,x2,x3)= x 1 2 +2x 2 2 +5x 3 2 +2x 1 x 2 +2x 1 x 3 +6x 2 x 3 的标准形为()
- 已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)
- 计算(1)(x+3)(2x2一4x+1)(2)(3x3一2x+1)(2-x)(3)3(x一2)(x+1)一2(x一5)(x-3)(4)x(x2一4)一(x+3)(x2一3x+2)
- 函数\(y = \ln \left( {1 + {x^2}} \right)\)的导数为( ). A: \( { { 2x} \over {1 + {x^2}}}\) B: \( - { { 2x} \over {1 + {x^2}}}\) C: \( { { 2x} \over {1 - {x^2}}}\) D: \( - { { 2x} \over {1 - {x^2}}}\)